| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 | 
							- // David Eberly, Geometric Tools, Redmond WA 98052
 
- // Copyright (c) 1998-2020
 
- // Distributed under the Boost Software License, Version 1.0.
 
- // https://www.boost.org/LICENSE_1_0.txt
 
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
 
- // Version: 4.0.2019.08.13
 
- #pragma once
 
- #include <Mathematics/ApprQuery.h>
 
- #include <Mathematics/Array2.h>
 
- #include <Mathematics/GMatrix.h>
 
- #include <array>
 
- // The samples are (x[i],y[i],w[i]) for 0 <= i < S. Think of w as a function
 
- // of x and y, say w = f(x,y). The function fits the samples with a
 
- // polynomial of degree d0 in x and degree d1 in y, say
 
- //   w = sum_{i=0}^{d0} sum_{j=0}^{d1} c[i][j]*x^i*y^j
 
- // The method is a least-squares fitting algorithm.  The mParameters stores
 
- // c[i][j] = mParameters[i+(d0+1)*j] for a total of (d0+1)*(d1+1)
 
- // coefficients. The observation type is std::array<Real,3>, which represents
 
- // a triple (x,y,w).
 
- //
 
- // WARNING. The fitting algorithm for polynomial terms
 
- //   (1,x,x^2,...,x^d0), (1,y,y^2,...,y^d1)
 
- // is known to be nonrobust for large degrees and for large magnitude data.
 
- // One alternative is to use orthogonal polynomials
 
- //   (f[0](x),...,f[d0](x)), (g[0](y),...,g[d1](y))
 
- // and apply the least-squares algorithm to these. Another alternative is to
 
- // transform
 
- //   (x',y',w') = ((x-xcen)/rng, (y-ycen)/rng, w/rng)
 
- // where xmin = min(x[i]), xmax = max(x[i]), xcen = (xmin+xmax)/2,
 
- // ymin = min(y[i]), ymax = max(y[i]), ycen = (ymin+ymax)/2, and
 
- // rng = max(xmax-xmin,ymax-ymin). Fit the (x',y',w') points,
 
- //   w' = sum_{i=0}^{d0} sum_{j=0}^{d1} c'[i][j]*(x')^i*(y')^j
 
- // The original polynomial is evaluated as
 
- //   w = rng * sum_{i=0}^{d0} sum_{j=0}^{d1} c'[i][j] *
 
- //       ((x-xcen)/rng)^i * ((y-ycen)/rng)^j
 
- namespace WwiseGTE
 
- {
 
-     template <typename Real>
 
-     class ApprPolynomial3 : public ApprQuery<Real, std::array<Real, 3>>
 
-     {
 
-     public:
 
-         // Initialize the model parameters to zero.
 
-         ApprPolynomial3(int xDegree, int yDegree)
 
-             :
 
-             mXDegree(xDegree),
 
-             mYDegree(yDegree),
 
-             mXDegreeP1(xDegree + 1),
 
-             mYDegreeP1(yDegree + 1),
 
-             mSize(mXDegreeP1 * mYDegreeP1),
 
-             mParameters(mSize, (Real)0),
 
-             mYCoefficient(mYDegreeP1, (Real)0)
 
-         {
 
-             mXDomain[0] = std::numeric_limits<Real>::max();
 
-             mXDomain[1] = -mXDomain[0];
 
-             mYDomain[0] = std::numeric_limits<Real>::max();
 
-             mYDomain[1] = -mYDomain[0];
 
-         }
 
-         // Basic fitting algorithm. See ApprQuery.h for the various Fit(...)
 
-         // functions that you can call.
 
-         virtual bool FitIndexed(
 
-             size_t numObservations, std::array<Real, 3> const* observations,
 
-             size_t numIndices, int const* indices) override
 
-         {
 
-             if (this->ValidIndices(numObservations, observations, numIndices, indices))
 
-             {
 
-                 int s, i0, j0, k0, i1, j1, k1;
 
-                 // Compute the powers of x and y.
 
-                 int numSamples = static_cast<int>(numIndices);
 
-                 int twoXDegree = 2 * mXDegree;
 
-                 int twoYDegree = 2 * mYDegree;
 
-                 Array2<Real> xPower(twoXDegree + 1, numSamples);
 
-                 Array2<Real> yPower(twoYDegree + 1, numSamples);
 
-                 for (s = 0; s < numSamples; ++s)
 
-                 {
 
-                     Real x = observations[indices[s]][0];
 
-                     Real y = observations[indices[s]][1];
 
-                     mXDomain[0] = std::min(x, mXDomain[0]);
 
-                     mXDomain[1] = std::max(x, mXDomain[1]);
 
-                     mYDomain[0] = std::min(y, mYDomain[0]);
 
-                     mYDomain[1] = std::max(y, mYDomain[1]);
 
-                     xPower[s][0] = (Real)1;
 
-                     for (i0 = 1; i0 <= twoXDegree; ++i0)
 
-                     {
 
-                         xPower[s][i0] = x * xPower[s][i0 - 1];
 
-                     }
 
-                     yPower[s][0] = (Real)1;
 
-                     for (j0 = 1; j0 <= twoYDegree; ++j0)
 
-                     {
 
-                         yPower[s][j0] = y * yPower[s][j0 - 1];
 
-                     }
 
-                 }
 
-                 // Matrix A is the Vandermonde matrix and vector B is the
 
-                 // right-hand side of the linear system A*X = B.
 
-                 GMatrix<Real> A(mSize, mSize);
 
-                 GVector<Real> B(mSize);
 
-                 for (j0 = 0; j0 <= mYDegree; ++j0)
 
-                 {
 
-                     for (i0 = 0; i0 <= mXDegree; ++i0)
 
-                     {
 
-                         Real sum = (Real)0;
 
-                         k0 = i0 + mXDegreeP1 * j0;
 
-                         for (s = 0; s < numSamples; ++s)
 
-                         {
 
-                             Real w = observations[indices[s]][2];
 
-                             sum += w * xPower[s][i0] * yPower[s][j0];
 
-                         }
 
-                         B[k0] = sum;
 
-                         for (j1 = 0; j1 <= mYDegree; ++j1)
 
-                         {
 
-                             for (i1 = 0; i1 <= mXDegree; ++i1)
 
-                             {
 
-                                 sum = (Real)0;
 
-                                 k1 = i1 + mXDegreeP1 * j1;
 
-                                 for (s = 0; s < numSamples; ++s)
 
-                                 {
 
-                                     sum += xPower[s][i0 + i1] * yPower[s][j0 + j1];
 
-                                 }
 
-                                 A(k0, k1) = sum;
 
-                             }
 
-                         }
 
-                     }
 
-                 }
 
-                 // Solve for the polynomial coefficients.
 
-                 GVector<Real> coefficients = Inverse(A) * B;
 
-                 bool hasNonzero = false;
 
-                 for (int i = 0; i < mSize; ++i)
 
-                 {
 
-                     mParameters[i] = coefficients[i];
 
-                     if (coefficients[i] != (Real)0)
 
-                     {
 
-                         hasNonzero = true;
 
-                     }
 
-                 }
 
-                 return hasNonzero;
 
-             }
 
-             std::fill(mParameters.begin(), mParameters.end(), (Real)0);
 
-             return false;
 
-         }
 
-         // Get the parameters for the best fit.
 
-         std::vector<Real> const& GetParameters() const
 
-         {
 
-             return mParameters;
 
-         }
 
-         virtual size_t GetMinimumRequired() const override
 
-         {
 
-             return static_cast<size_t>(mSize);
 
-         }
 
-         // Compute the model error for the specified observation for the
 
-         // current model parameters. The returned value for observation
 
-         // (x0,y0,w0) is |w(x0,y0) - w0|, where w(x,y) is the fitted
 
-         // polynomial.
 
-         virtual Real Error(std::array<Real, 3> const& observation) const override
 
-         {
 
-             Real w = Evaluate(observation[0], observation[1]);
 
-             Real error = std::fabs(w - observation[2]);
 
-             return error;
 
-         }
 
-         virtual void CopyParameters(ApprQuery<Real, std::array<Real, 3>> const* input) override
 
-         {
 
-             auto source = dynamic_cast<ApprPolynomial3 const*>(input);
 
-             if (source)
 
-             {
 
-                 *this = *source;
 
-             }
 
-         }
 
-         // Evaluate the polynomial. The domain intervals are provided so you
 
-         // can interpolate ((x,y) in domain) or extrapolate ((x,y) not in
 
-         // domain).
 
-         std::array<Real, 2> const& GetXDomain() const
 
-         {
 
-             return mXDomain;
 
-         }
 
-         std::array<Real, 2> const& GetYDomain() const
 
-         {
 
-             return mYDomain;
 
-         }
 
-         Real Evaluate(Real x, Real y) const
 
-         {
 
-             int i0, i1;
 
-             Real w;
 
-             for (i1 = 0; i1 <= mYDegree; ++i1)
 
-             {
 
-                 i0 = mXDegree;
 
-                 w = mParameters[i0 + mXDegreeP1 * i1];
 
-                 while (--i0 >= 0)
 
-                 {
 
-                     w = mParameters[i0 + mXDegreeP1 * i1] + w * x;
 
-                 }
 
-                 mYCoefficient[i1] = w;
 
-             }
 
-             i1 = mYDegree;
 
-             w = mYCoefficient[i1];
 
-             while (--i1 >= 0)
 
-             {
 
-                 w = mYCoefficient[i1] + w * y;
 
-             }
 
-             return w;
 
-         }
 
-     private:
 
-         int mXDegree, mYDegree, mXDegreeP1, mYDegreeP1, mSize;
 
-         std::array<Real, 2> mXDomain, mYDomain;
 
-         std::vector<Real> mParameters;
 
-         // This array is used by Evaluate() to avoid reallocation of the
 
-         // 'vector' for each call. The member is mutable because, to the
 
-         // user, the call to Evaluate does not modify the polynomial.
 
-         mutable std::vector<Real> mYCoefficient;
 
-     };
 
- }
 
 
  |