123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/CubicRootsQR.h>
- // An implementation of the QR algorithm described in "Matrix Computations,
- // 2nd edition" by G. H. Golub and C. F. Van Loan, The Johns Hopkins
- // University Press, Baltimore MD, Fourth Printing 1993. In particular,
- // the implementation is based on Chapter 7 (The Unsymmetric Eigenvalue
- // Problem), Section 7.5 (The Practical QR Algorithm). The algorithm is
- // specialized for the companion matrix associated with a quartic polynomial.
- namespace WwiseGTE
- {
- template <typename Real>
- class QuarticRootsQR
- {
- public:
- typedef std::array<std::array<Real, 4>, 4> Matrix;
- // Solve p(x) = c0 + c1 * x + c2 * x^2 + c3 * x^3 + x^4 = 0.
- uint32_t operator() (uint32_t maxIterations, Real c0, Real c1, Real c2, Real c3,
- uint32_t& numRoots, std::array<Real, 4>& roots) const
- {
- // Create the companion matrix for the polynomial. The matrix is
- // in upper Hessenberg form.
- Matrix A;
- A[0][0] = (Real)0;
- A[0][1] = (Real)0;
- A[0][2] = (Real)0;
- A[0][3] = -c0;
- A[1][0] = (Real)1;
- A[1][1] = (Real)0;
- A[1][2] = (Real)0;
- A[1][3] = -c1;
- A[2][0] = (Real)0;
- A[2][1] = (Real)1;
- A[2][2] = (Real)0;
- A[2][3] = -c2;
- A[3][0] = (Real)0;
- A[3][1] = (Real)0;
- A[3][2] = (Real)1;
- A[3][3] = -c3;
- // Avoid the QR-cycle when c1 = c2 = 0 and avoid the slow
- // convergence when c1 and c2 are nearly zero.
- std::array<Real, 3> V{
- (Real)1,
- (Real)0.36602540378443865,
- (Real)0.36602540378443865 };
- DoIteration(V, A);
- return operator()(maxIterations, A, numRoots, roots);
- }
- // Compute the real eigenvalues of the upper Hessenberg matrix A. The
- // matrix is modified by in-place operations, so if you need to
- // remember A, you must make your own copy before calling this
- // function.
- uint32_t operator() (uint32_t maxIterations, Matrix& A,
- uint32_t& numRoots, std::array<Real, 4>& roots) const
- {
- numRoots = 0;
- std::fill(roots.begin(), roots.end(), (Real)0);
- for (uint32_t numIterations = 0; numIterations < maxIterations; ++numIterations)
- {
- // Apply a Francis QR iteration.
- Real tr = A[2][2] + A[3][3];
- Real det = A[2][2] * A[3][3] - A[2][3] * A[3][2];
- std::array<Real, 3> X{
- A[0][0] * A[0][0] + A[0][1] * A[1][0] - tr * A[0][0] + det,
- A[1][0] * (A[0][0] + A[1][1] - tr),
- A[1][0] * A[2][1] };
- std::array<Real, 3> V = House<3>(X);
- DoIteration(V, A);
- // Test for uncoupling of A.
- Real tr12 = A[1][1] + A[2][2];
- if (tr12 + A[2][1] == tr12)
- {
- GetQuadraticRoots(0, 1, A, numRoots, roots);
- GetQuadraticRoots(2, 3, A, numRoots, roots);
- return numIterations;
- }
- Real tr01 = A[0][0] + A[1][1];
- if (tr01 + A[1][0] == tr01)
- {
- numRoots = 1;
- roots[0] = A[0][0];
- // TODO: The cubic solver is not designed to process 3x3
- // submatrices of an NxN matrix, so the copy of a
- // submatrix of A to B is a simple workaround for running
- // the solver. Write general root-finding/ code that
- // avoids such copying.
- uint32_t subMaxIterations = maxIterations - numIterations;
- typename CubicRootsQR<Real>::Matrix B;
- for (int r = 0; r < 3; ++r)
- {
- for (int c = 0; c < 3; ++c)
- {
- B[r][c] = A[r + 1][c + 1];
- }
- }
- uint32_t numSubroots = 0;
- std::array<Real, 3> subroots;
- uint32_t numSubiterations = CubicRootsQR<Real>()(subMaxIterations, B,
- numSubroots, subroots);
- for (uint32_t i = 0; i < numSubroots; ++i)
- {
- roots[numRoots++] = subroots[i];
- }
- return numIterations + numSubiterations;
- }
- Real tr23 = A[2][2] + A[3][3];
- if (tr23 + A[3][2] == tr23)
- {
- numRoots = 1;
- roots[0] = A[3][3];
- // TODO: The cubic solver is not designed to process 3x3
- // submatrices of an NxN matrix, so the copy of a
- // submatrix of A to B is a simple workaround for running
- // the solver. Write general root-finding/ code that
- // avoids such copying.
- uint32_t subMaxIterations = maxIterations - numIterations;
- typename CubicRootsQR<Real>::Matrix B;
- for (int r = 0; r < 3; ++r)
- {
- for (int c = 0; c < 3; ++c)
- {
- B[r][c] = A[r][c];
- }
- }
- uint32_t numSubroots = 0;
- std::array<Real, 3> subroots;
- uint32_t numSubiterations = CubicRootsQR<Real>()(subMaxIterations, B,
- numSubroots, subroots);
- for (uint32_t i = 0; i < numSubroots; ++i)
- {
- roots[numRoots++] = subroots[i];
- }
- return numIterations + numSubiterations;
- }
- }
- return maxIterations;
- }
- private:
- void DoIteration(std::array<Real, 3> const& V, Matrix& A) const
- {
- Real multV = (Real)-2 / (V[0] * V[0] + V[1] * V[1] + V[2] * V[2]);
- std::array<Real, 3> MV{ multV * V[0], multV * V[1], multV * V[2] };
- RowHouse<3>(0, 2, 0, 3, V, MV, A);
- ColHouse<3>(0, 3, 0, 2, V, MV, A);
- std::array<Real, 3> X{ A[1][0], A[2][0], A[3][0] };
- std::array<Real, 3> locV = House<3>(X);
- multV = (Real)-2 / (locV[0] * locV[0] + locV[1] * locV[1] + locV[2] * locV[2]);
- MV = { multV * locV[0], multV * locV[1], multV * locV[2] };
- RowHouse<3>(1, 3, 0, 3, locV, MV, A);
- ColHouse<3>(0, 3, 1, 3, locV, MV, A);
- std::array<Real, 2> Y{ A[2][1], A[3][1] };
- std::array<Real, 2> W = House<2>(Y);
- Real multW = (Real)-2 / (W[0] * W[0] + W[1] * W[1]);
- std::array<Real, 2> MW = { multW * W[0], multW * W[1] };
- RowHouse<2>(2, 3, 0, 3, W, MW, A);
- ColHouse<2>(0, 3, 2, 3, W, MW, A);
- }
- template <int N>
- std::array<Real, N> House(std::array<Real, N> const& X) const
- {
- std::array<Real, N> V;
- Real length = (Real)0;
- for (int i = 0; i < N; ++i)
- {
- length += X[i] * X[i];
- }
- length = std::sqrt(length);
- if (length != (Real)0)
- {
- Real sign = (X[0] >= (Real)0 ? (Real)1 : (Real)-1);
- Real denom = X[0] + sign * length;
- for (int i = 1; i < N; ++i)
- {
- V[i] = X[i] / denom;
- }
- }
- else
- {
- V.fill((Real)0);
- }
- V[0] = (Real)1;
- return V;
- }
- template <int N>
- void RowHouse(int rmin, int rmax, int cmin, int cmax,
- std::array<Real, N> const& V, std::array<Real, N> const& MV, Matrix& A) const
- {
- // Only elements cmin through cmax are used.
- std::array<Real, 4> W;
- for (int c = cmin; c <= cmax; ++c)
- {
- W[c] = (Real)0;
- for (int r = rmin, k = 0; r <= rmax; ++r, ++k)
- {
- W[c] += V[k] * A[r][c];
- }
- }
- for (int r = rmin, k = 0; r <= rmax; ++r, ++k)
- {
- for (int c = cmin; c <= cmax; ++c)
- {
- A[r][c] += MV[k] * W[c];
- }
- }
- }
- template <int N>
- void ColHouse(int rmin, int rmax, int cmin, int cmax,
- std::array<Real, N> const& V, std::array<Real, N> const& MV, Matrix& A) const
- {
- // Only elements rmin through rmax are used.
- std::array<Real, 4> W;
- for (int r = rmin; r <= rmax; ++r)
- {
- W[r] = (Real)0;
- for (int c = cmin, k = 0; c <= cmax; ++c, ++k)
- {
- W[r] += V[k] * A[r][c];
- }
- }
- for (int r = rmin; r <= rmax; ++r)
- {
- for (int c = cmin, k = 0; c <= cmax; ++c, ++k)
- {
- A[r][c] += W[r] * MV[k];
- }
- }
- }
- void GetQuadraticRoots(int i0, int i1, Matrix const& A,
- uint32_t& numRoots, std::array<Real, 4>& roots) const
- {
- // Solve x^2 - t * x + d = 0, where t is the trace and d is the
- // determinant of the 2x2 matrix defined by indices i0 and i1.
- // The discriminant is D = (t/2)^2 - d. When D >= 0, the roots
- // are real values t/2 - sqrt(D) and t/2 + sqrt(D). To avoid
- // potential numerical issues with subtractive cancellation, the
- // roots are computed as
- // r0 = t/2 + sign(t/2)*sqrt(D), r1 = trace - r0
- Real trace = A[i0][i0] + A[i1][i1];
- Real halfTrace = trace * (Real)0.5;
- Real determinant = A[i0][i0] * A[i1][i1] - A[i0][i1] * A[i1][i0];
- Real discriminant = halfTrace * halfTrace - determinant;
- if (discriminant >= (Real)0)
- {
- Real sign = (trace >= (Real)0 ? (Real)1 : (Real)-1);
- Real root = halfTrace + sign * std::sqrt(discriminant);
- roots[numRoots++] = root;
- roots[numRoots++] = trace - root;
- }
- }
- };
- }
|