123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2020.01.10
- #pragma once
- #include <Mathematics/Vector.h>
- namespace WwiseGTE
- {
- // Template alias for convenience.
- template <typename Real>
- using Vector3 = Vector<3, Real>;
- // Cross, UnitCross, and DotCross have a template parameter N that should
- // be 3 or 4. The latter case supports affine vectors in 4D (last
- // component w = 0) when you want to use 4-tuples and 4x4 matrices for
- // affine algebra.
- // Compute the cross product using the formal determinant:
- // cross = det{{e0,e1,e2},{x0,x1,x2},{y0,y1,y2}}
- // = (x1*y2-x2*y1, x2*y0-x0*y2, x0*y1-x1*y0)
- // where e0 = (1,0,0), e1 = (0,1,0), e2 = (0,0,1), v0 = (x0,x1,x2), and
- // v1 = (y0,y1,y2).
- template <int N, typename Real>
- Vector<N, Real> Cross(Vector<N, Real> const& v0, Vector<N, Real> const& v1)
- {
- static_assert(N == 3 || N == 4, "Dimension must be 3 or 4.");
- Vector<N, Real> result;
- result.MakeZero();
- result[0] = v0[1] * v1[2] - v0[2] * v1[1];
- result[1] = v0[2] * v1[0] - v0[0] * v1[2];
- result[2] = v0[0] * v1[1] - v0[1] * v1[0];
- return result;
- }
- // Compute the normalized cross product.
- template <int N, typename Real>
- Vector<N, Real> UnitCross(Vector<N, Real> const& v0, Vector<N, Real> const& v1, bool robust = false)
- {
- static_assert(N == 3 || N == 4, "Dimension must be 3 or 4.");
- Vector<N, Real> unitCross = Cross(v0, v1);
- Normalize(unitCross, robust);
- return unitCross;
- }
- // Compute Dot((x0,x1,x2),Cross((y0,y1,y2),(z0,z1,z2)), the triple scalar
- // product of three vectors, where v0 = (x0,x1,x2), v1 = (y0,y1,y2), and
- // v2 is (z0,z1,z2).
- template <int N, typename Real>
- Real DotCross(Vector<N, Real> const& v0, Vector<N, Real> const& v1,
- Vector<N, Real> const& v2)
- {
- static_assert(N == 3 || N == 4, "Dimension must be 3 or 4.");
- return Dot(v0, Cross(v1, v2));
- }
- // Compute a right-handed orthonormal basis for the orthogonal complement
- // of the input vectors. The function returns the smallest length of the
- // unnormalized vectors computed during the process. If this value is
- // nearly zero, it is possible that the inputs are linearly dependent
- // (within numerical round-off errors). On input, numInputs must be 1 or
- // 2 and v[0] through v[numInputs-1] must be initialized. On output, the
- // vectors v[0] through v[2] form an orthonormal set.
- template <typename Real>
- Real ComputeOrthogonalComplement(int numInputs, Vector3<Real>* v, bool robust = false)
- {
- if (numInputs == 1)
- {
- if (std::fabs(v[0][0]) > std::fabs(v[0][1]))
- {
- v[1] = { -v[0][2], (Real)0, +v[0][0] };
- }
- else
- {
- v[1] = { (Real)0, +v[0][2], -v[0][1] };
- }
- numInputs = 2;
- }
- if (numInputs == 2)
- {
- v[2] = Cross(v[0], v[1]);
- return Orthonormalize<3, Real>(3, v, robust);
- }
- return (Real)0;
- }
- // Compute the barycentric coordinates of the point P with respect to the
- // tetrahedron <V0,V1,V2,V3>, P = b0*V0 + b1*V1 + b2*V2 + b3*V3, where
- // b0 + b1 + b2 + b3 = 1. The return value is 'true' iff {V0,V1,V2,V3} is
- // a linearly independent set. Numerically, this is measured by
- // |det[V0 V1 V2 V3]| <= epsilon. The values bary[] are valid only when
- // the return value is 'true' but set to zero when the return value is
- // 'false'.
- template <typename Real>
- bool ComputeBarycentrics(Vector3<Real> const& p, Vector3<Real> const& v0,
- Vector3<Real> const& v1, Vector3<Real> const& v2, Vector3<Real> const& v3,
- Real bary[4], Real epsilon = (Real)0)
- {
- // Compute the vectors relative to V3 of the tetrahedron.
- Vector3<Real> diff[4] = { v0 - v3, v1 - v3, v2 - v3, p - v3 };
- Real det = DotCross(diff[0], diff[1], diff[2]);
- if (det < -epsilon || det > epsilon)
- {
- Real invDet = ((Real)1) / det;
- bary[0] = DotCross(diff[3], diff[1], diff[2]) * invDet;
- bary[1] = DotCross(diff[3], diff[2], diff[0]) * invDet;
- bary[2] = DotCross(diff[3], diff[0], diff[1]) * invDet;
- bary[3] = (Real)1 - bary[0] - bary[1] - bary[2];
- return true;
- }
- for (int i = 0; i < 4; ++i)
- {
- bary[i] = (Real)0;
- }
- return false;
- }
- // Get intrinsic information about the input array of vectors. The return
- // value is 'true' iff the inputs are valid (numVectors > 0, v is not
- // null, and epsilon >= 0), in which case the class members are valid.
- template <typename Real>
- class IntrinsicsVector3
- {
- public:
- // The constructor sets the class members based on the input set.
- IntrinsicsVector3(int numVectors, Vector3<Real> const* v, Real inEpsilon)
- :
- epsilon(inEpsilon),
- dimension(0),
- maxRange((Real)0),
- origin{ (Real)0, (Real)0, (Real)0 },
- extremeCCW(false)
- {
- min[0] = (Real)0;
- min[1] = (Real)0;
- min[2] = (Real)0;
- direction[0] = { (Real)0, (Real)0, (Real)0 };
- direction[1] = { (Real)0, (Real)0, (Real)0 };
- direction[2] = { (Real)0, (Real)0, (Real)0 };
- extreme[0] = 0;
- extreme[1] = 0;
- extreme[2] = 0;
- extreme[3] = 0;
- if (numVectors > 0 && v && epsilon >= (Real)0)
- {
- // Compute the axis-aligned bounding box for the input vectors.
- // Keep track of the indices into 'vectors' for the current
- // min and max.
- int j, indexMin[3], indexMax[3];
- for (j = 0; j < 3; ++j)
- {
- min[j] = v[0][j];
- max[j] = min[j];
- indexMin[j] = 0;
- indexMax[j] = 0;
- }
- int i;
- for (i = 1; i < numVectors; ++i)
- {
- for (j = 0; j < 3; ++j)
- {
- if (v[i][j] < min[j])
- {
- min[j] = v[i][j];
- indexMin[j] = i;
- }
- else if (v[i][j] > max[j])
- {
- max[j] = v[i][j];
- indexMax[j] = i;
- }
- }
- }
- // Determine the maximum range for the bounding box.
- maxRange = max[0] - min[0];
- extreme[0] = indexMin[0];
- extreme[1] = indexMax[0];
- Real range = max[1] - min[1];
- if (range > maxRange)
- {
- maxRange = range;
- extreme[0] = indexMin[1];
- extreme[1] = indexMax[1];
- }
- range = max[2] - min[2];
- if (range > maxRange)
- {
- maxRange = range;
- extreme[0] = indexMin[2];
- extreme[1] = indexMax[2];
- }
- // The origin is either the vector of minimum x0-value, vector
- // of minimum x1-value, or vector of minimum x2-value.
- origin = v[extreme[0]];
- // Test whether the vector set is (nearly) a vector.
- if (maxRange <= epsilon)
- {
- dimension = 0;
- for (j = 0; j < 3; ++j)
- {
- extreme[j + 1] = extreme[0];
- }
- return;
- }
- // Test whether the vector set is (nearly) a line segment. We
- // need {direction[2],direction[3]} to span the orthogonal
- // complement of direction[0].
- direction[0] = v[extreme[1]] - origin;
- Normalize(direction[0], false);
- if (std::fabs(direction[0][0]) > std::fabs(direction[0][1]))
- {
- direction[1][0] = -direction[0][2];
- direction[1][1] = (Real)0;
- direction[1][2] = +direction[0][0];
- }
- else
- {
- direction[1][0] = (Real)0;
- direction[1][1] = +direction[0][2];
- direction[1][2] = -direction[0][1];
- }
- Normalize(direction[1], false);
- direction[2] = Cross(direction[0], direction[1]);
- // Compute the maximum distance of the points from the line
- // origin + t * direction[0].
- Real maxDistance = (Real)0;
- Real distance, dot;
- extreme[2] = extreme[0];
- for (i = 0; i < numVectors; ++i)
- {
- Vector3<Real> diff = v[i] - origin;
- dot = Dot(direction[0], diff);
- Vector3<Real> proj = diff - dot * direction[0];
- distance = Length(proj, false);
- if (distance > maxDistance)
- {
- maxDistance = distance;
- extreme[2] = i;
- }
- }
- if (maxDistance <= epsilon * maxRange)
- {
- // The points are (nearly) on the line
- // origin + t * direction[0].
- dimension = 1;
- extreme[2] = extreme[1];
- extreme[3] = extreme[1];
- return;
- }
- // Test whether the vector set is (nearly) a planar polygon.
- // The point v[extreme[2]] is farthest from the line:
- // origin + t * direction[0]. The vector
- // v[extreme[2]] - origin is not necessarily perpendicular to
- // direction[0], so project out the direction[0] component so
- // that the result is perpendicular to direction[0].
- direction[1] = v[extreme[2]] - origin;
- dot = Dot(direction[0], direction[1]);
- direction[1] -= dot * direction[0];
- Normalize(direction[1], false);
- // We need direction[2] to span the orthogonal complement of
- // {direction[0],direction[1]}.
- direction[2] = Cross(direction[0], direction[1]);
- // Compute the maximum distance of the points from the plane
- // origin+t0 * direction[0] + t1 * direction[1].
- maxDistance = (Real)0;
- Real maxSign = (Real)0;
- extreme[3] = extreme[0];
- for (i = 0; i < numVectors; ++i)
- {
- Vector3<Real> diff = v[i] - origin;
- distance = Dot(direction[2], diff);
- Real sign = (distance > (Real)0 ? (Real)1 :
- (distance < (Real)0 ? (Real)-1 : (Real)0));
- distance = std::fabs(distance);
- if (distance > maxDistance)
- {
- maxDistance = distance;
- maxSign = sign;
- extreme[3] = i;
- }
- }
- if (maxDistance <= epsilon * maxRange)
- {
- // The points are (nearly) on the plane
- // origin + t0 * direction[0] + t1 * direction[1].
- dimension = 2;
- extreme[3] = extreme[2];
- return;
- }
- dimension = 3;
- extremeCCW = (maxSign > (Real)0);
- return;
- }
- }
- // A nonnegative tolerance that is used to determine the intrinsic
- // dimension of the set.
- Real epsilon;
- // The intrinsic dimension of the input set, computed based on the
- // nonnegative tolerance mEpsilon.
- int dimension;
- // Axis-aligned bounding box of the input set. The maximum range is
- // the larger of max[0]-min[0], max[1]-min[1], and max[2]-min[2].
- Real min[3], max[3];
- Real maxRange;
- // Coordinate system. The origin is valid for any dimension d. The
- // unit-length direction vector is valid only for 0 <= i < d. The
- // extreme index is relative to the array of input points, and is also
- // valid only for 0 <= i < d. If d = 0, all points are effectively
- // the same, but the use of an epsilon may lead to an extreme index
- // that is not zero. If d = 1, all points effectively lie on a line
- // segment. If d = 2, all points effectively line on a plane. If
- // d = 3, the points are not coplanar.
- Vector3<Real> origin;
- Vector3<Real> direction[3];
- // The indices that define the maximum dimensional extents. The
- // values extreme[0] and extreme[1] are the indices for the points
- // that define the largest extent in one of the coordinate axis
- // directions. If the dimension is 2, then extreme[2] is the index
- // for the point that generates the largest extent in the direction
- // perpendicular to the line through the points corresponding to
- // extreme[0] and extreme[1]. Furthermore, if the dimension is 3,
- // then extreme[3] is the index for the point that generates the
- // largest extent in the direction perpendicular to the triangle
- // defined by the other extreme points. The tetrahedron formed by the
- // points V[extreme[0]], V[extreme[1]], V[extreme[2]], and
- // V[extreme[3]] is clockwise or counterclockwise, the condition
- // stored in extremeCCW.
- int extreme[4];
- bool extremeCCW;
- };
- }
|