123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Matrix3x3.h>
- namespace WwiseGTE
- {
- // The input triangle mesh must represent a polyhedron. The triangles are
- // represented as triples of indices <V0,V1,V2> into the vertex array.
- // The index array has numTriangles such triples. The Boolean value
- // 'bodyCoords is' 'true' if you want the inertia tensor to be relative to
- // body coordinates but 'false' if you want it to be relative to world
- // coordinates.
- //
- // The code assumes the rigid body has a constant density of 1. If your
- // application assigns a constant density of 'd', then you must multiply
- // the output 'mass' by 'd' and the output 'inertia' by 'd'.
- template <typename Real>
- void ComputeMassProperties(Vector3<Real> const* vertices, int numTriangles,
- int const* indices, bool bodyCoords, Real& mass, Vector3<Real>& center,
- Matrix3x3<Real>& inertia)
- {
- Real const oneDiv6 = (Real)1 / (Real)6;
- Real const oneDiv24 = (Real)1 / (Real)24;
- Real const oneDiv60 = (Real)1 / (Real)60;
- Real const oneDiv120 = (Real)1 / (Real)120;
- // order: 1, x, y, z, x^2, y^2, z^2, xy, yz, zx
- std::array<Real, 10> integral;
- integral.fill((Real)0);
- int const* index = indices;
- for (int i = 0; i < numTriangles; ++i)
- {
- // Get vertices of triangle i.
- Vector3<Real> v0 = vertices[*index++];
- Vector3<Real> v1 = vertices[*index++];
- Vector3<Real> v2 = vertices[*index++];
- // Get cross product of edges and normal vector.
- Vector3<Real> V1mV0 = v1 - v0;
- Vector3<Real> V2mV0 = v2 - v0;
- Vector3<Real> N = Cross(V1mV0, V2mV0);
- // Compute integral terms.
- Real tmp0, tmp1, tmp2;
- Real f1x, f2x, f3x, g0x, g1x, g2x;
- tmp0 = v0[0] + v1[0];
- f1x = tmp0 + v2[0];
- tmp1 = v0[0] * v0[0];
- tmp2 = tmp1 + v1[0] * tmp0;
- f2x = tmp2 + v2[0] * f1x;
- f3x = v0[0] * tmp1 + v1[0] * tmp2 + v2[0] * f2x;
- g0x = f2x + v0[0] * (f1x + v0[0]);
- g1x = f2x + v1[0] * (f1x + v1[0]);
- g2x = f2x + v2[0] * (f1x + v2[0]);
- Real f1y, f2y, f3y, g0y, g1y, g2y;
- tmp0 = v0[1] + v1[1];
- f1y = tmp0 + v2[1];
- tmp1 = v0[1] * v0[1];
- tmp2 = tmp1 + v1[1] * tmp0;
- f2y = tmp2 + v2[1] * f1y;
- f3y = v0[1] * tmp1 + v1[1] * tmp2 + v2[1] * f2y;
- g0y = f2y + v0[1] * (f1y + v0[1]);
- g1y = f2y + v1[1] * (f1y + v1[1]);
- g2y = f2y + v2[1] * (f1y + v2[1]);
- Real f1z, f2z, f3z, g0z, g1z, g2z;
- tmp0 = v0[2] + v1[2];
- f1z = tmp0 + v2[2];
- tmp1 = v0[2] * v0[2];
- tmp2 = tmp1 + v1[2] * tmp0;
- f2z = tmp2 + v2[2] * f1z;
- f3z = v0[2] * tmp1 + v1[2] * tmp2 + v2[2] * f2z;
- g0z = f2z + v0[2] * (f1z + v0[2]);
- g1z = f2z + v1[2] * (f1z + v1[2]);
- g2z = f2z + v2[2] * (f1z + v2[2]);
- // Update integrals.
- integral[0] += N[0] * f1x;
- integral[1] += N[0] * f2x;
- integral[2] += N[1] * f2y;
- integral[3] += N[2] * f2z;
- integral[4] += N[0] * f3x;
- integral[5] += N[1] * f3y;
- integral[6] += N[2] * f3z;
- integral[7] += N[0] * (v0[1] * g0x + v1[1] * g1x + v2[1] * g2x);
- integral[8] += N[1] * (v0[2] * g0y + v1[2] * g1y + v2[2] * g2y);
- integral[9] += N[2] * (v0[0] * g0z + v1[0] * g1z + v2[0] * g2z);
- }
- integral[0] *= oneDiv6;
- integral[1] *= oneDiv24;
- integral[2] *= oneDiv24;
- integral[3] *= oneDiv24;
- integral[4] *= oneDiv60;
- integral[5] *= oneDiv60;
- integral[6] *= oneDiv60;
- integral[7] *= oneDiv120;
- integral[8] *= oneDiv120;
- integral[9] *= oneDiv120;
- // mass
- mass = integral[0];
- // center of mass
- center = Vector3<Real>{ integral[1], integral[2], integral[3] } / mass;
- // inertia relative to world origin
- inertia(0, 0) = integral[5] + integral[6];
- inertia(0, 1) = -integral[7];
- inertia(0, 2) = -integral[9];
- inertia(1, 0) = inertia(0, 1);
- inertia(1, 1) = integral[4] + integral[6];
- inertia(1, 2) = -integral[8];
- inertia(2, 0) = inertia(0, 2);
- inertia(2, 1) = inertia(1, 2);
- inertia(2, 2) = integral[4] + integral[5];
- // inertia relative to center of mass
- if (bodyCoords)
- {
- inertia(0, 0) -= mass * (center[1] * center[1] + center[2] * center[2]);
- inertia(0, 1) += mass * center[0] * center[1];
- inertia(0, 2) += mass * center[2] * center[0];
- inertia(1, 0) = inertia(0, 1);
- inertia(1, 1) -= mass * (center[2] * center[2] + center[0] * center[0]);
- inertia(1, 2) += mass * center[1] * center[2];
- inertia(2, 0) = inertia(0, 2);
- inertia(2, 1) = inertia(1, 2);
- inertia(2, 2) -= mass * (center[0] * center[0] + center[1] * center[1]);
- }
- }
- }
|