123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/IntrIntervals.h>
- #include <Mathematics/IntrLine3Ellipsoid3.h>
- #include <Mathematics/Segment.h>
- #include <Mathematics/Matrix3x3.h>
- // The queries consider the ellipsoid to be a solid.
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Segment3<Real>, Ellipsoid3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- Result operator()(Segment3<Real> const& segment, Ellipsoid3<Real> const& ellipsoid)
- {
- // The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the line is
- // X = P+t*D. Substitute the line equation into the ellipsoid
- // equation to obtain a quadratic equation
- // Q(t) = a2*t^2 + 2*a1*t + a0 = 0
- // where a2 = D^T*M*D, a1 = D^T*M*(P-K) and
- // a0 = (P-K)^T*M*(P-K)-1.
- Result result;
- Vector3<Real> segOrigin, segDirection;
- Real segExtent;
- segment.GetCenteredForm(segOrigin, segDirection, segExtent);
- Matrix3x3<Real> M;
- ellipsoid.GetM(M);
- Vector3<Real> diff = segOrigin - ellipsoid.center;
- Vector3<Real> matDir = M * segDirection;
- Vector3<Real> matDiff = M * diff;
- Real a2 = Dot(segDirection, matDir);
- Real a1 = Dot(segDirection, matDiff);
- Real a0 = Dot(diff, matDiff) - (Real)1;
- Real discr = a1 * a1 - a0 * a2;
- if (discr >= (Real)0)
- {
- // Test whether ray origin is inside ellipsoid.
- if (a0 <= (Real)0)
- {
- result.intersect = true;
- }
- else
- {
- // At this point, Q(0) = a0 > 0 and Q(t) has real roots.
- // It is also the case that a2 > 0, since M is positive
- // definite, implying that D^T*M*D > 0 for any nonzero
- // vector D.
- Real q, qder;
- if (a1 >= (Real)0)
- {
- // Roots are possible only on [-e,0], e is the segment
- // extent. At least one root occurs if Q(-e) <= 0 or
- // if Q(-e) > 0 and Q'(-e) < 0.
- q = a0 + segExtent * ((Real)-2 * a1 + a2 * segExtent);
- if (q <= (Real)0)
- {
- result.intersect = true;
- }
- else
- {
- qder = a1 - a2 * segExtent;
- result.intersect = (qder < (Real)0);
- }
- }
- else
- {
- // Roots are only possible on [0,e], e is the segment
- // extent. At least one root occurs if Q(e) <= 0 or
- // if Q(e) > 0 and Q'(e) > 0.
- q = a0 + segExtent * ((Real)2 * a1 + a2 * segExtent);
- if (q <= (Real)0.0)
- {
- result.intersect = true;
- }
- else
- {
- qder = a1 + a2 * segExtent;
- result.intersect = (qder < (Real)0);
- }
- }
- }
- }
- else
- {
- // No intersection if Q(t) has no real roots.
- result.intersect = false;
- }
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Segment3<Real>, Ellipsoid3<Real>>
- :
- public FIQuery<Real, Line3<Real>, Ellipsoid3<Real>>
- {
- public:
- struct Result
- :
- public FIQuery<Real, Line3<Real>, Ellipsoid3<Real>>::Result
- {
- // No additional information to compute.
- };
- Result operator()(Segment3<Real> const& segment, Ellipsoid3<Real> const& ellipsoid)
- {
- Vector3<Real> segOrigin, segDirection;
- Real segExtent;
- segment.GetCenteredForm(segOrigin, segDirection, segExtent);
- Result result;
- DoQuery(segOrigin, segDirection, segExtent, ellipsoid, result);
- for (int i = 0; i < result.numIntersections; ++i)
- {
- result.point[i] = segOrigin + result.parameter[i] * segDirection;
- }
- return result;
- }
- protected:
- void DoQuery(Vector3<Real> const& segOrigin,
- Vector3<Real> const& segDirection, Real segExtent,
- Ellipsoid3<Real> const& ellipsoid, Result& result)
- {
- FIQuery<Real, Line3<Real>, Ellipsoid3<Real>>::DoQuery(segOrigin,
- segDirection, ellipsoid, result);
- if (result.intersect)
- {
- // The line containing the segment intersects the ellipsoid;
- // the t-interval is [t0,t1]. The segment intersects the
- // ellipsoid as long as [t0,t1] overlaps the segment
- // t-interval [-segExtent,+segExtent].
- std::array<Real, 2> segInterval = { -segExtent, segExtent };
- FIQuery<Real, std::array<Real, 2>, std::array<Real, 2>> iiQuery;
- auto iiResult = iiQuery(result.parameter, segInterval);
- if (iiResult.intersect)
- {
- result.numIntersections = iiResult.numIntersections;
- result.parameter = iiResult.overlap;
- }
- else
- {
- result.intersect = false;
- result.numIntersections = 0;
- }
- }
- }
- };
- }
|