123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/FIQuery.h>
- #include <Mathematics/TIQuery.h>
- #include <Mathematics/Hyperplane.h>
- #include <Mathematics/Triangle.h>
- #include <Mathematics/Vector3.h>
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Plane3<Real>, Triangle3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- // The number is 0 (no intersection), 1 (plane and triangle
- // intersect at a single point [vertex]), 2 (plane and triangle
- // intersect in a segment), or 3 (triangle is in the plane).
- // When the number is 2, the segment is either interior to the
- // triangle or is an edge of the triangle, the distinction stored
- // in 'isInterior'.
- int numIntersections;
- bool isInterior;
- };
- Result operator()(Plane3<Real> const& plane, Triangle3<Real> const& triangle)
- {
- Result result;
- // Determine on which side of the plane the vertices lie. The
- // table of possibilities is listed next with n = numNegative,
- // p = numPositive, and z = numZero.
- //
- // n p z intersection
- // ------------------------------------
- // 0 3 0 none
- // 0 2 1 vertex
- // 0 1 2 edge
- // 0 0 3 triangle in the plane
- // 1 2 0 segment (2 edges clipped)
- // 1 1 1 segment (1 edge clipped)
- // 1 0 2 edge
- // 2 1 0 segment (2 edges clipped)
- // 2 0 1 vertex
- // 3 0 0 none
- Real s[3];
- int numPositive = 0, numNegative = 0, numZero = 0;
- for (int i = 0; i < 3; ++i)
- {
- s[i] = Dot(plane.normal, triangle.v[i]) - plane.constant;
- if (s[i] > (Real)0)
- {
- ++numPositive;
- }
- else if (s[i] < (Real)0)
- {
- ++numNegative;
- }
- else
- {
- ++numZero;
- }
- }
- if (numZero == 0 && numPositive > 0 && numNegative > 0)
- {
- result.intersect = true;
- result.numIntersections = 2;
- result.isInterior = true;
- return result;
- }
- if (numZero == 1)
- {
- result.intersect = true;
- for (int i = 0; i < 3; ++i)
- {
- if (s[i] == (Real)0)
- {
- if (numPositive == 2 || numNegative == 2)
- {
- result.numIntersections = 1;
- }
- else
- {
- result.numIntersections = 2;
- result.isInterior = true;
- }
- break;
- }
- }
- return result;
- }
- if (numZero == 2)
- {
- result.intersect = true;
- result.numIntersections = 2;
- result.isInterior = false;
- return result;
- }
- if (numZero == 3)
- {
- result.intersect = true;
- result.numIntersections = 3;
- }
- else
- {
- result.intersect = false;
- result.numIntersections = 0;
- }
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Plane3<Real>, Triangle3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- // The number is 0 (no intersection), 1 (plane and triangle
- // intersect at a single point [vertex]), 2 (plane and triangle
- // intersect in a segment), or 3 (triangle is in the plane).
- // When the number is 2, the segment is either interior to the
- // triangle or is an edge of the triangle, the distinction stored
- // in 'isInterior'.
- int numIntersections;
- bool isInterior;
- Vector3<Real> point[3];
- };
- Result operator()(Plane3<Real> const& plane, Triangle3<Real> const& triangle)
- {
- Result result;
- // Determine on which side of the plane the vertices lie. The
- // table of possibilities is listed next with n = numNegative,
- // p = numPositive, and z = numZero.
- //
- // n p z intersection
- // ------------------------------------
- // 0 3 0 none
- // 0 2 1 vertex
- // 0 1 2 edge
- // 0 0 3 triangle in the plane
- // 1 2 0 segment (2 edges clipped)
- // 1 1 1 segment (1 edge clipped)
- // 1 0 2 edge
- // 2 1 0 segment (2 edges clipped)
- // 2 0 1 vertex
- // 3 0 0 none
- Real s[3];
- int numPositive = 0, numNegative = 0, numZero = 0;
- for (int i = 0; i < 3; ++i)
- {
- s[i] = Dot(plane.normal, triangle.v[i]) - plane.constant;
- if (s[i] > (Real)0)
- {
- ++numPositive;
- }
- else if (s[i] < (Real)0)
- {
- ++numNegative;
- }
- else
- {
- ++numZero;
- }
- }
- if (numZero == 0 && numPositive > 0 && numNegative > 0)
- {
- result.intersect = true;
- result.numIntersections = 2;
- result.isInterior = true;
- Real sign = (Real)3 - numPositive * (Real)2;
- for (int i0 = 0; i0 < 3; ++i0)
- {
- if (sign * s[i0] > (Real)0)
- {
- int i1 = (i0 + 1) % 3, i2 = (i0 + 2) % 3;
- Real t1 = s[i1] / (s[i1] - s[i0]);
- Real t2 = s[i2] / (s[i2] - s[i0]);
- result.point[0] = triangle.v[i1] + t1 *
- (triangle.v[i0] - triangle.v[i1]);
- result.point[1] = triangle.v[i2] + t2 *
- (triangle.v[i0] - triangle.v[i2]);
- break;
- }
- }
- return result;
- }
- if (numZero == 1)
- {
- result.intersect = true;
- for (int i0 = 0; i0 < 3; ++i0)
- {
- if (s[i0] == (Real)0)
- {
- int i1 = (i0 + 1) % 3, i2 = (i0 + 2) % 3;
- result.point[0] = triangle.v[i0];
- if (numPositive == 2 || numNegative == 2)
- {
- result.numIntersections = 1;
- }
- else
- {
- result.numIntersections = 2;
- result.isInterior = true;
- Real t = s[i1] / (s[i1] - s[i2]);
- result.point[1] = triangle.v[i1] + t *
- (triangle.v[i2] - triangle.v[i1]);
- }
- break;
- }
- }
- return result;
- }
- if (numZero == 2)
- {
- result.intersect = true;
- result.numIntersections = 2;
- result.isInterior = false;
- for (int i0 = 0; i0 < 3; ++i0)
- {
- if (s[i0] != (Real)0)
- {
- int i1 = (i0 + 1) % 3, i2 = (i0 + 2) % 3;
- result.point[0] = triangle.v[i1];
- result.point[1] = triangle.v[i2];
- break;
- }
- }
- return result;
- }
- if (numZero == 3)
- {
- result.intersect = true;
- result.numIntersections = 3;
- result.point[0] = triangle.v[0];
- result.point[1] = triangle.v[1];
- result.point[2] = triangle.v[2];
- }
- else
- {
- result.intersect = false;
- result.numIntersections = 0;
- }
- return result;
- }
- };
- }
|