123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/TIQuery.h>
- #include <Mathematics/OrientedBox.h>
- #include <Mathematics/Vector3.h>
- // The queries consider the box to be a solid.
- //
- // The test-intersection query uses the method of separating axes.
- // https://www.geometrictools.com/Documentation/MethodOfSeparatingAxes.pdf
- // The set of potential separating directions includes the 3 face normals of
- // box0, the 3 face normals of box1, and 9 directions, each of which is the
- // cross product of an edge of box0 and and an edge of box1.
- //
- // The separating axes involving cross products of edges has numerical
- // robustness problems when the two edges are nearly parallel. The cross
- // product of the edges is nearly the zero vector, so normalization of the
- // cross product may produce unit-length directions that are not close to the
- // true direction. Such a pair of edges occurs when a box0 face normal N0 and
- // a box1 face normal N1 are nearly parallel. In this case, you may skip the
- // edge-edge directions, which is equivalent to projecting the boxes onto the
- // plane with normal N0 and applying a 2D separating axis test. The ability
- // to do so involves choosing a small nonnegative epsilon. It is used to
- // determine whether two face normals, one from each box, are nearly parallel:
- // |Dot(N0,N1)| >= 1 - epsilon. If the input is negative, it is clamped to
- // zero.
- //
- // The pair of integers 'separating', say, (i0,i1), identify the axis that
- // reported separation; there may be more than one but only one is
- // reported. If the separating axis is a face normal N[i0] of the aligned
- // box0 in dimension i0, then (i0,-1) is returned. If the axis is a face
- // normal box1.Axis[i1], then (-1,i1) is returned. If the axis is a cross
- // product of edges, Cross(N[i0],box1.Axis[i1]), then (i0,i1) is returned.
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, OrientedBox3<Real>, OrientedBox3<Real>>
- {
- public:
- struct Result
- {
- // The 'epsilon' value must be nonnegative.
- Result(Real inEpsilon = (Real)0)
- :
- epsilon(inEpsilon >= (Real)0 ? inEpsilon : (Real)0)
- {
- }
- bool intersect;
- Real epsilon;
- int separating[2];
- };
- Result operator()(OrientedBox3<Real> const& box0, OrientedBox3<Real> const& box1)
- {
- Result result;
- // Convenience variables.
- Vector3<Real> const& C0 = box0.center;
- Vector3<Real> const* A0 = &box0.axis[0];
- Vector3<Real> const& E0 = box0.extent;
- Vector3<Real> const& C1 = box1.center;
- Vector3<Real> const* A1 = &box1.axis[0];
- Vector3<Real> const& E1 = box1.extent;
- Real const cutoff = (Real)1 - result.epsilon;
- bool existsParallelPair = false;
- // Compute difference of box centers.
- Vector3<Real> D = C1 - C0;
- // dot01[i][j] = Dot(A0[i],A1[j]) = A1[j][i]
- Real dot01[3][3];
- // |dot01[i][j]|
- Real absDot01[3][3];
- // Dot(D, A0[i])
- Real dotDA0[3];
- // interval radii and distance between centers
- Real r0, r1, r;
- // r0 + r1
- Real r01;
- // Test for separation on the axis C0 + t*A0[0].
- for (int i = 0; i < 3; ++i)
- {
- dot01[0][i] = Dot(A0[0], A1[i]);
- absDot01[0][i] = std::fabs(dot01[0][i]);
- if (absDot01[0][i] > cutoff)
- {
- existsParallelPair = true;
- }
- }
- dotDA0[0] = Dot(D, A0[0]);
- r = std::fabs(dotDA0[0]);
- r1 = E1[0] * absDot01[0][0] + E1[1] * absDot01[0][1] + E1[2] * absDot01[0][2];
- r01 = E0[0] + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 0;
- result.separating[1] = -1;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[1].
- for (int i = 0; i < 3; ++i)
- {
- dot01[1][i] = Dot(A0[1], A1[i]);
- absDot01[1][i] = std::fabs(dot01[1][i]);
- if (absDot01[1][i] > cutoff)
- {
- existsParallelPair = true;
- }
- }
- dotDA0[1] = Dot(D, A0[1]);
- r = std::fabs(dotDA0[1]);
- r1 = E1[0] * absDot01[1][0] + E1[1] * absDot01[1][1] + E1[2] * absDot01[1][2];
- r01 = E0[1] + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 1;
- result.separating[1] = -1;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[2].
- for (int i = 0; i < 3; ++i)
- {
- dot01[2][i] = Dot(A0[2], A1[i]);
- absDot01[2][i] = std::fabs(dot01[2][i]);
- if (absDot01[2][i] > cutoff)
- {
- existsParallelPair = true;
- }
- }
- dotDA0[2] = Dot(D, A0[2]);
- r = std::fabs(dotDA0[2]);
- r1 = E1[0] * absDot01[2][0] + E1[1] * absDot01[2][1] + E1[2] * absDot01[2][2];
- r01 = E0[2] + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 2;
- result.separating[1] = -1;
- return result;
- }
- // Test for separation on the axis C0 + t*A1[0].
- r = std::fabs(Dot(D, A1[0]));
- r0 = E0[0] * absDot01[0][0] + E0[1] * absDot01[1][0] + E0[2] * absDot01[2][0];
- r01 = r0 + E1[0];
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = -1;
- result.separating[1] = 0;
- return result;
- }
- // Test for separation on the axis C0 + t*A1[1].
- r = std::fabs(Dot(D, A1[1]));
- r0 = E0[0] * absDot01[0][1] + E0[1] * absDot01[1][1] + E0[2] * absDot01[2][1];
- r01 = r0 + E1[1];
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = -1;
- result.separating[1] = 1;
- return result;
- }
- // Test for separation on the axis C0 + t*A1[2].
- r = std::fabs(Dot(D, A1[2]));
- r0 = E0[0] * absDot01[0][2] + E0[1] * absDot01[1][2] + E0[2] * absDot01[2][2];
- r01 = r0 + E1[2];
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = -1;
- result.separating[1] = 2;
- return result;
- }
- // At least one pair of box axes was parallel, so the separation is
- // effectively in 2D. The edge-edge axes do not need to be tested.
- if (existsParallelPair)
- {
- return true;
- }
- // Test for separation on the axis C0 + t*A0[0]xA1[0].
- r = std::fabs(dotDA0[2] * dot01[1][0] - dotDA0[1] * dot01[2][0]);
- r0 = E0[1] * absDot01[2][0] + E0[2] * absDot01[1][0];
- r1 = E1[1] * absDot01[0][2] + E1[2] * absDot01[0][1];
- r01 = r0 + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 0;
- result.separating[1] = 0;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[0]xA1[1].
- r = std::fabs(dotDA0[2] * dot01[1][1] - dotDA0[1] * dot01[2][1]);
- r0 = E0[1] * absDot01[2][1] + E0[2] * absDot01[1][1];
- r1 = E1[0] * absDot01[0][2] + E1[2] * absDot01[0][0];
- r01 = r0 + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 0;
- result.separating[1] = 1;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[0]xA1[2].
- r = std::fabs(dotDA0[2] * dot01[1][2] - dotDA0[1] * dot01[2][2]);
- r0 = E0[1] * absDot01[2][2] + E0[2] * absDot01[1][2];
- r1 = E1[0] * absDot01[0][1] + E1[1] * absDot01[0][0];
- r01 = r0 + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 0;
- result.separating[1] = 2;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[1]xA1[0].
- r = std::fabs(dotDA0[0] * dot01[2][0] - dotDA0[2] * dot01[0][0]);
- r0 = E0[0] * absDot01[2][0] + E0[2] * absDot01[0][0];
- r1 = E1[1] * absDot01[1][2] + E1[2] * absDot01[1][1];
- r01 = r0 + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 1;
- result.separating[1] = 0;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[1]xA1[1].
- r = std::fabs(dotDA0[0] * dot01[2][1] - dotDA0[2] * dot01[0][1]);
- r0 = E0[0] * absDot01[2][1] + E0[2] * absDot01[0][1];
- r1 = E1[0] * absDot01[1][2] + E1[2] * absDot01[1][0];
- r01 = r0 + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 1;
- result.separating[1] = 1;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[1]xA1[2].
- r = std::fabs(dotDA0[0] * dot01[2][2] - dotDA0[2] * dot01[0][2]);
- r0 = E0[0] * absDot01[2][2] + E0[2] * absDot01[0][2];
- r1 = E1[0] * absDot01[1][1] + E1[1] * absDot01[1][0];
- r01 = r0 + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 1;
- result.separating[1] = 2;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[2]xA1[0].
- r = std::fabs(dotDA0[1] * dot01[0][0] - dotDA0[0] * dot01[1][0]);
- r0 = E0[0] * absDot01[1][0] + E0[1] * absDot01[0][0];
- r1 = E1[1] * absDot01[2][2] + E1[2] * absDot01[2][1];
- r01 = r0 + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 2;
- result.separating[1] = 0;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[2]xA1[1].
- r = std::fabs(dotDA0[1] * dot01[0][1] - dotDA0[0] * dot01[1][1]);
- r0 = E0[0] * absDot01[1][1] + E0[1] * absDot01[0][1];
- r1 = E1[0] * absDot01[2][2] + E1[2] * absDot01[2][0];
- r01 = r0 + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 2;
- result.separating[1] = 1;
- return result;
- }
- // Test for separation on the axis C0 + t*A0[2]xA1[2].
- r = std::fabs(dotDA0[1] * dot01[0][2] - dotDA0[0] * dot01[1][2]);
- r0 = E0[0] * absDot01[1][2] + E0[1] * absDot01[0][2];
- r1 = E1[0] * absDot01[2][1] + E1[1] * absDot01[2][0];
- r01 = r0 + r1;
- if (r > r01)
- {
- result.intersect = false;
- result.separating[0] = 2;
- result.separating[1] = 2;
- return result;
- }
- result.intersect = true;
- return result;
- }
- };
- }
|