123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/FIQuery.h>
- #include <Mathematics/TIQuery.h>
- #include <Mathematics/DistPointLine.h>
- #include <Mathematics/Hypersphere.h>
- #include <Mathematics/Vector2.h>
- // The queries consider the circle to be a solid (disk).
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Line2<Real>, Circle2<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- Result operator()(Line2<Real> const& line, Circle2<Real> const& circle)
- {
- Result result;
- DCPQuery<Real, Vector2<Real>, Line2<Real>> plQuery;
- auto plResult = plQuery(circle.center, line);
- result.intersect = (plResult.distance <= circle.radius);
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Line2<Real>, Circle2<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- int numIntersections;
- std::array<Real, 2> parameter;
- std::array<Vector2<Real>, 2> point;
- };
- Result operator()(Line2<Real> const& line, Circle2<Real> const& circle)
- {
- Result result;
- DoQuery(line.origin, line.direction, circle, result);
- for (int i = 0; i < result.numIntersections; ++i)
- {
- result.point[i] = line.origin + result.parameter[i] * line.direction;
- }
- return result;
- }
- protected:
- void DoQuery(Vector2<Real> const& lineOrigin,
- Vector2<Real> const& lineDirection, Circle2<Real> const& circle,
- Result& result)
- {
- // Intersection of a the line P+t*D and the circle |X-C| = R.
- // The line direction is unit length. The t-value is a
- // real-valued root to the quadratic equation
- // 0 = |t*D+P-C|^2 - R^2
- // = t^2 + 2*Dot(D,P-C)*t + |P-C|^2-R^2
- // = t^2 + 2*a1*t + a0
- // If there are two distinct roots, the order is t0 < t1.
- Vector2<Real> diff = lineOrigin - circle.center;
- Real a0 = Dot(diff, diff) - circle.radius * circle.radius;
- Real a1 = Dot(lineDirection, diff);
- Real discr = a1 * a1 - a0;
- if (discr > (Real)0)
- {
- Real root = std::sqrt(discr);
- result.intersect = true;
- result.numIntersections = 2;
- result.parameter[0] = -a1 - root;
- result.parameter[1] = -a1 + root;
- }
- else if (discr < (Real)0)
- {
- result.intersect = false;
- result.numIntersections = 0;
- }
- else // discr == 0
- {
- result.intersect = true;
- result.numIntersections = 1;
- result.parameter[0] = -a1;
- }
- }
- };
- }
|