123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/AlignedBox.h>
- #include <Mathematics/Cone.h>
- #include <Mathematics/IntrRay3AlignedBox3.h>
- #include <Mathematics/IntrSegment3AlignedBox3.h>
- // Test for intersection of a box and a cone. The cone can be infinite
- // 0 <= minHeight < maxHeight = std::numeric_limits<Real>::max()
- // or finite (cone frustum)
- // 0 <= minHeight < maxHeight < std::numeric_limits<Real>::max().
- // The algorithm is described in
- // https://www.geometrictools.com/Documentation/IntersectionBoxCone.pdf
- // and reports an intersection only when the intersection set has positive
- // volume. For example, let the box be outside the cone. If the box is
- // below the minHeight plane at the cone vertex and just touches the cone
- // vertex, no intersection is reported. If the box is above the maxHeight
- // plane and just touches the disk capping the cone, either at a single
- // point, a line segment of points or a polygon of points, no intersection
- // is reported.
- // TODO: These queries were designed when an infinite cone was defined
- // by choosing maxHeight of std::numeric_limits<Real>::max(). The Cone<N,Real>
- // class has been redesigned not to use std::numeric_limits to allow for
- // arithmetic systems that do not have representations for infinities
- // (such as BSNumber and BSRational). The intersection queries need to be
- // rewritten for the new class design. FOR NOW, the queries will work with
- // float/double when you create a cone using the cone-frustum constructor
- // Cone(ray, angle, minHeight, std::numeric_limits<Real>::max()).
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, AlignedBox<3, Real>, Cone<3, Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- TIQuery()
- :
- mNumCandidateEdges(0)
- {
- // An edge is { v0, v1 }, where v0 and v1 are relative to mVertices
- // with v0 < v1.
- mEdges[0] = { 0, 1 };
- mEdges[1] = { 1, 3 };
- mEdges[2] = { 2, 3 };
- mEdges[3] = { 0, 2 };
- mEdges[4] = { 4, 5 };
- mEdges[5] = { 5, 7 };
- mEdges[6] = { 6, 7 };
- mEdges[7] = { 4, 6 };
- mEdges[8] = { 0, 4 };
- mEdges[9] = { 1, 5 };
- mEdges[10] = { 3, 7 };
- mEdges[11] = { 2, 6 };
- // A face is { { v0, v1, v2, v3 }, { e0, e1, e2, e3 } }, where
- // { v0, v1, v2, v3 } are relative to mVertices with
- // v0 = min(v0,v1,v2,v3) and where { e0, e1, e2, e3 } are relative
- // to mEdges. For example, mFaces[0] has vertices { 0, 4, 6, 2 }.
- // The edge { 0, 4 } is mEdges[8], the edge { 4, 6 } is mEdges[7],
- // the edge { 6, 2 } is mEdges[11] and the edge { 2, 0 } is
- // mEdges[3]; thus, the edge indices are { 8, 7, 11, 3 }.
- mFaces[0] = { { 0, 4, 6, 2 }, { 8, 7, 11, 3 } };
- mFaces[1] = { { 1, 3, 7, 5 }, { 1, 10, 5, 9 } };
- mFaces[2] = { { 0, 1, 5, 4 }, { 0, 9, 4, 8 } };
- mFaces[3] = { { 2, 6, 7, 3 }, { 11, 6, 10, 2 } };
- mFaces[4] = { { 0, 2, 3, 1 }, { 3, 2, 1, 0 } };
- mFaces[5] = { { 4, 5, 7, 6 }, { 4, 5, 6, 7 } };
- // Clear the edges.
- std::array<size_t, 2> ezero = { 0, 0 };
- mCandidateEdges.fill(ezero);
- for (size_t r = 0; r < MAX_VERTICES; ++r)
- {
- mAdjacencyMatrix[r].fill(0);
- }
- mConfiguration[0] = &TIQuery::NNNN_0;
- mConfiguration[1] = &TIQuery::NNNZ_1;
- mConfiguration[2] = &TIQuery::NNNP_2;
- mConfiguration[3] = &TIQuery::NNZN_3;
- mConfiguration[4] = &TIQuery::NNZZ_4;
- mConfiguration[5] = &TIQuery::NNZP_5;
- mConfiguration[6] = &TIQuery::NNPN_6;
- mConfiguration[7] = &TIQuery::NNPZ_7;
- mConfiguration[8] = &TIQuery::NNPP_8;
- mConfiguration[9] = &TIQuery::NZNN_9;
- mConfiguration[10] = &TIQuery::NZNZ_10;
- mConfiguration[11] = &TIQuery::NZNP_11;
- mConfiguration[12] = &TIQuery::NZZN_12;
- mConfiguration[13] = &TIQuery::NZZZ_13;
- mConfiguration[14] = &TIQuery::NZZP_14;
- mConfiguration[15] = &TIQuery::NZPN_15;
- mConfiguration[16] = &TIQuery::NZPZ_16;
- mConfiguration[17] = &TIQuery::NZPP_17;
- mConfiguration[18] = &TIQuery::NPNN_18;
- mConfiguration[19] = &TIQuery::NPNZ_19;
- mConfiguration[20] = &TIQuery::NPNP_20;
- mConfiguration[21] = &TIQuery::NPZN_21;
- mConfiguration[22] = &TIQuery::NPZZ_22;
- mConfiguration[23] = &TIQuery::NPZP_23;
- mConfiguration[24] = &TIQuery::NPPN_24;
- mConfiguration[25] = &TIQuery::NPPZ_25;
- mConfiguration[26] = &TIQuery::NPPP_26;
- mConfiguration[27] = &TIQuery::ZNNN_27;
- mConfiguration[28] = &TIQuery::ZNNZ_28;
- mConfiguration[29] = &TIQuery::ZNNP_29;
- mConfiguration[30] = &TIQuery::ZNZN_30;
- mConfiguration[31] = &TIQuery::ZNZZ_31;
- mConfiguration[32] = &TIQuery::ZNZP_32;
- mConfiguration[33] = &TIQuery::ZNPN_33;
- mConfiguration[34] = &TIQuery::ZNPZ_34;
- mConfiguration[35] = &TIQuery::ZNPP_35;
- mConfiguration[36] = &TIQuery::ZZNN_36;
- mConfiguration[37] = &TIQuery::ZZNZ_37;
- mConfiguration[38] = &TIQuery::ZZNP_38;
- mConfiguration[39] = &TIQuery::ZZZN_39;
- mConfiguration[40] = &TIQuery::ZZZZ_40;
- mConfiguration[41] = &TIQuery::ZZZP_41;
- mConfiguration[42] = &TIQuery::ZZPN_42;
- mConfiguration[43] = &TIQuery::ZZPZ_43;
- mConfiguration[44] = &TIQuery::ZZPP_44;
- mConfiguration[45] = &TIQuery::ZPNN_45;
- mConfiguration[46] = &TIQuery::ZPNZ_46;
- mConfiguration[47] = &TIQuery::ZPNP_47;
- mConfiguration[48] = &TIQuery::ZPZN_48;
- mConfiguration[49] = &TIQuery::ZPZZ_49;
- mConfiguration[50] = &TIQuery::ZPZP_50;
- mConfiguration[51] = &TIQuery::ZPPN_51;
- mConfiguration[52] = &TIQuery::ZPPZ_52;
- mConfiguration[53] = &TIQuery::ZPPP_53;
- mConfiguration[54] = &TIQuery::PNNN_54;
- mConfiguration[55] = &TIQuery::PNNZ_55;
- mConfiguration[56] = &TIQuery::PNNP_56;
- mConfiguration[57] = &TIQuery::PNZN_57;
- mConfiguration[58] = &TIQuery::PNZZ_58;
- mConfiguration[59] = &TIQuery::PNZP_59;
- mConfiguration[60] = &TIQuery::PNPN_60;
- mConfiguration[61] = &TIQuery::PNPZ_61;
- mConfiguration[62] = &TIQuery::PNPP_62;
- mConfiguration[63] = &TIQuery::PZNN_63;
- mConfiguration[64] = &TIQuery::PZNZ_64;
- mConfiguration[65] = &TIQuery::PZNP_65;
- mConfiguration[66] = &TIQuery::PZZN_66;
- mConfiguration[67] = &TIQuery::PZZZ_67;
- mConfiguration[68] = &TIQuery::PZZP_68;
- mConfiguration[69] = &TIQuery::PZPN_69;
- mConfiguration[70] = &TIQuery::PZPZ_70;
- mConfiguration[71] = &TIQuery::PZPP_71;
- mConfiguration[72] = &TIQuery::PPNN_72;
- mConfiguration[73] = &TIQuery::PPNZ_73;
- mConfiguration[74] = &TIQuery::PPNP_74;
- mConfiguration[75] = &TIQuery::PPZN_75;
- mConfiguration[76] = &TIQuery::PPZZ_76;
- mConfiguration[77] = &TIQuery::PPZP_77;
- mConfiguration[78] = &TIQuery::PPPN_78;
- mConfiguration[79] = &TIQuery::PPPZ_79;
- mConfiguration[80] = &TIQuery::PPPP_80;
- }
- Result operator()(AlignedBox<3, Real> const& box, Cone<3, Real> const& cone)
- {
- Result result;
- // Quick-rejectance test. Determine whether the box is outside
- // the slab bounded by the minimum and maximum height planes.
- // When outside the slab, the box vertices are not required by the
- // cone-box intersection query, so the vertices are not yet
- // computed.
- Real boxMinHeight(0), boxMaxHeight(0);
- ComputeBoxHeightInterval(box, cone, boxMinHeight, boxMaxHeight);
- // TODO: See the comments at the beginning of this file.
- Real coneMaxHeight = (cone.IsFinite() ? cone.GetMaxHeight() : std::numeric_limits<Real>::max());
- if (boxMaxHeight <= cone.GetMinHeight() || boxMinHeight >= coneMaxHeight)
- {
- // There is no volumetric overlap of the box and the cone. The
- // box is clipped entirely.
- result.intersect = false;
- return result;
- }
- // Quick-acceptance test. Determine whether the cone axis
- // intersects the box.
- if (ConeAxisIntersectsBox(box, cone))
- {
- result.intersect = true;
- return result;
- }
- // Test for box fully inside the slab. When inside the slab, the
- // box vertices are required by the cone-box intersection query,
- // so they are computed here; they are also required in the
- // remaining cases. Also when inside the slab, the box edges are
- // the candidates, so they are copied to mCandidateEdges.
- if (BoxFullyInConeSlab(box, boxMinHeight, boxMaxHeight, cone))
- {
- result.intersect = CandidatesHavePointInsideCone(cone);
- return result;
- }
- // Clear the candidates array and adjacency matrix.
- ClearCandidates();
- // The box intersects at least one plane. Compute the box-plane
- // edge-interior intersection points. Insert the box subedges into
- // the array of candidate edges.
- ComputeCandidatesOnBoxEdges(cone);
- // Insert any relevant box face-interior clipped edges into the array
- // of candidate edges.
- ComputeCandidatesOnBoxFaces();
- result.intersect = CandidatesHavePointInsideCone(cone);
- return result;
- }
- protected:
- // The constants here are described in the comments below.
- enum
- {
- NUM_BOX_VERTICES = 8,
- NUM_BOX_EDGES = 12,
- NUM_BOX_FACES = 6,
- MAX_VERTICES = 32,
- VERTEX_MIN_BASE = 8,
- VERTEX_MAX_BASE = 20,
- MAX_CANDIDATE_EDGES = 496,
- NUM_CONFIGURATIONS = 81
- };
- // The box topology is that of a cube whose vertices have components
- // in {0,1}. The cube vertices are indexed by
- // 0: (0,0,0), 1: (1,0,0), 2: (1,1,0), 3: (0,1,0)
- // 4: (0,0,1), 5: (1,0,1), 6: (1,1,1), 7: (0,1,1)
- // The first 8 vertices are the box corners, the next 12 vertices are
- // reserved for hmin-edge points and the final 12 vertices are reserved
- // for the hmax-edge points. The conservative upper bound of the number
- // of vertices is 8 + 12 + 12 = 32.
- std::array<Vector3<Real>, MAX_VERTICES> mVertices;
- // The box has 12 edges stored in mEdges. An edge is mEdges[i] =
- // { v0, v1 }, where the indices v0 and v1 are relative to mVertices
- // with v0 < v1.
- std::array<std::array<size_t, 2>, NUM_BOX_EDGES> mEdges;
- // The box has 6 faces stored in mFaces. A face is mFaces[i] =
- // { { v0, v1, v2, v3 }, { e0, e1, e2, e3 } }, where the face corner
- // vertices are { v0, v1, v2, v3 }. These indices are relative to
- // mVertices. The indices { e0, e1, e2, e3 } are relative to mEdges.
- // The index e0 refers to edge { v0, v1 }, the index e1 refers to edge
- // { v1, v2 }, the index e2 refers to edge { v2, v3 } and the index e3
- // refers to edge { v3, v0 }. The ordering of vertices for the faces
- // is/ counterclockwise when viewed from outside the box. The choice
- // of initial vertex affects how you implement the graph data
- // structure. In this implementation, the initial vertex has minimum
- // index for all vertices of that face. The faces themselves are
- // listed as -x face, +x face, -y face, +y face, -z face and +z face.
- struct Face
- {
- std::array<size_t, 4> v, e;
- };
- std::array<Face, NUM_BOX_FACES> mFaces;
- // Store the signed distances from the minimum and maximum height
- // planes for the cone to the projection of the box vertices onto the
- // cone axis.
- std::array<Real, NUM_BOX_VERTICES> mProjectionMin, mProjectionMax;
- // The mCandidateEdges array stores the edges of the clipped box that
- // are candidates for containing the optimizing point. The maximum
- // number of candidate edges is 1 + 2 + ... + 31 = 496, which is a
- // conservative bound because not all pairs of vertices form edges on
- // box faces. The candidate edges are stored as (v0,v1) with v0 < v1.
- // The implementation is designed so that during a single query, the
- // number of candidate edges can only grow.
- size_t mNumCandidateEdges;
- std::array<std::array<size_t, 2>, MAX_CANDIDATE_EDGES> mCandidateEdges;
- // The mAdjancencyMatrix is a simple representation of edges in the
- // graph G = (V,E) that represents the (wireframe) clipped box. An
- // edge (r,c) does not exist when mAdjancencyMatrix[r][c] = 0. If an
- // edge (r,c) does exist, it is appended to mCandidateEdges at index k
- // and the adjacency matrix is set to mAdjacencyMatrix[r][c] = 1.
- // This allows for a fast edge-in-graph test and a fast and efficient
- // clear of mCandidateEdges and mAdjacencyMatrix.
- std::array<std::array<size_t, MAX_VERTICES>, MAX_VERTICES> mAdjacencyMatrix;
- typedef void (TIQuery::* ConfigurationFunction)(size_t, Face const&);
- std::array<ConfigurationFunction, NUM_CONFIGURATIONS> mConfiguration;
- static void ComputeBoxHeightInterval(AlignedBox<3, Real> const& box, Cone<3, Real> const& cone,
- Real& boxMinHeight, Real& boxMaxHeight)
- {
- Vector<3, Real> C, e;
- box.GetCenteredForm(C, e);
- Vector<3, Real> const& V = cone.ray.origin;
- Vector<3, Real> const& U = cone.ray.direction;
- Vector<3, Real> CmV = C - V;
- Real DdCmV = Dot(U, CmV);
- Real radius = e[0] * std::abs(U[0]) + e[1] * std::abs(U[1]) + e[2] * std::abs(U[2]);
- boxMinHeight = DdCmV - radius;
- boxMaxHeight = DdCmV + radius;
- }
- static bool ConeAxisIntersectsBox(AlignedBox<3, Real> const& box, Cone<3, Real> const& cone)
- {
- if (cone.IsFinite())
- {
- Segment<3, Real> segment;
- segment.p[0] = cone.ray.origin + cone.GetMinHeight() * cone.ray.direction;
- segment.p[1] = cone.ray.origin + cone.GetMaxHeight() * cone.ray.direction;
- auto sbResult = TIQuery<Real, Segment<3, Real>, AlignedBox<3, Real>>()(segment, box);
- if (sbResult.intersect)
- {
- return true;
- }
- }
- else
- {
- Ray<3, Real> ray;
- ray.origin = cone.ray.origin + cone.GetMinHeight() * cone.ray.direction;
- ray.direction = cone.ray.direction;
- auto rbResult = TIQuery<Real, Ray<3, Real>, AlignedBox<3, Real>>()(ray, box);
- if (rbResult.intersect)
- {
- return true;
- }
- }
- return false;
- }
- bool BoxFullyInConeSlab(AlignedBox<3, Real> const& box, Real boxMinHeight, Real boxMaxHeight, Cone<3, Real> const& cone)
- {
- // Compute the box vertices relative to cone vertex as origin.
- mVertices[0] = { box.min[0], box.min[1], box.min[2] };
- mVertices[1] = { box.max[0], box.min[1], box.min[2] };
- mVertices[2] = { box.min[0], box.max[1], box.min[2] };
- mVertices[3] = { box.max[0], box.max[1], box.min[2] };
- mVertices[4] = { box.min[0], box.min[1], box.max[2] };
- mVertices[5] = { box.max[0], box.min[1], box.max[2] };
- mVertices[6] = { box.min[0], box.max[1], box.max[2] };
- mVertices[7] = { box.max[0], box.max[1], box.max[2] };
- for (int i = 0; i < NUM_BOX_VERTICES; ++i)
- {
- mVertices[i] -= cone.ray.origin;
- }
- Real coneMaxHeight = (cone.IsFinite() ? cone.GetMaxHeight() : std::numeric_limits<Real>::max());
- if (cone.GetMinHeight() <= boxMinHeight && boxMaxHeight <= coneMaxHeight)
- {
- // The box is fully inside, so no clipping is necessary.
- std::copy(mEdges.begin(), mEdges.end(), mCandidateEdges.begin());
- mNumCandidateEdges = 12;
- return true;
- }
- return false;
- }
- static bool HasPointInsideCone(Vector<3, Real> const& P0, Vector<3, Real> const& P1,
- Cone<3, Real> const& cone)
- {
- // Define F(X) = Dot(U,X - V)/|X - V|, where U is the unit-length
- // cone axis direction and V is the cone vertex. The incoming
- // points P0 and P1 are relative to V; that is, the original
- // points are X0 = P0 + V and X1 = P1 + V. The segment <P0,P1>
- // and cone intersect when a segment point X is inside the cone;
- // that is, when F(X) > cosAngle. The comparison is converted to
- // an equivalent one that does not involve divisions in order to
- // avoid a division by zero if a vertex or edge contain (0,0,0).
- // The function is G(X) = Dot(U,X-V) - cosAngle*Length(X-V).
- Vector<3, Real> const& U = cone.ray.direction;
- // Test whether P0 or P1 is inside the cone.
- Real g = Dot(U, P0) - cone.cosAngle * Length(P0);
- if (g > (Real)0)
- {
- // X0 = P0 + V is inside the cone.
- return true;
- }
- g = Dot(U, P1) - cone.cosAngle * Length(P1);
- if (g > (Real)0)
- {
- // X1 = P1 + V is inside the cone.
- return true;
- }
- // Test whether an interior segment point is inside the cone.
- Vector<3, Real> E = P1 - P0;
- Vector<3, Real> crossP0U = Cross(P0, U);
- Vector<3, Real> crossP0E = Cross(P0, E);
- Real dphi0 = Dot(crossP0E, crossP0U);
- if (dphi0 > (Real)0)
- {
- Vector3<Real> crossP1U = Cross(P1, U);
- Real dphi1 = Dot(crossP0E, crossP1U);
- if (dphi1 < (Real)0)
- {
- Real t = dphi0 / (dphi0 - dphi1);
- Vector<3, Real> PMax = P0 + t * E;
- g = Dot(U, PMax) - cone.cosAngle * Length(PMax);
- if (g > (Real)0)
- {
- // The edge point XMax = Pmax + V is inside the cone.
- return true;
- }
- }
- }
- return false;
- }
- bool CandidatesHavePointInsideCone(Cone<3, Real> const& cone) const
- {
- for (size_t i = 0; i < mNumCandidateEdges; ++i)
- {
- auto const& edge = mCandidateEdges[i];
- Vector<3, Real> const& P0 = mVertices[edge[0]];
- Vector<3, Real> const& P1 = mVertices[edge[1]];
- if (HasPointInsideCone(P0, P1, cone))
- {
- return true;
- }
- }
- return false;
- }
- void ComputeCandidatesOnBoxEdges(Cone<3, Real> const& cone)
- {
- for (size_t i = 0; i < NUM_BOX_VERTICES; ++i)
- {
- Real h = Dot(cone.ray.direction, mVertices[i]);
- Real coneMaxHeight = (cone.IsFinite() ? cone.GetMaxHeight() : std::numeric_limits<Real>::max());
- mProjectionMin[i] = cone.GetMinHeight() - h;
- mProjectionMax[i] = h - coneMaxHeight;
- }
- size_t v0 = VERTEX_MIN_BASE, v1 = VERTEX_MAX_BASE;
- for (size_t i = 0; i < NUM_BOX_EDGES; ++i, ++v0, ++v1)
- {
- auto const& edge = mEdges[i];
- // In the next blocks, the sign comparisons can be expressed
- // instead as "s0 * s1 < 0". The multiplication could lead to
- // floating-point underflow where the product becomes 0, so I
- // avoid that approach.
- // Process the hmin-plane.
- Real p0Min = mProjectionMin[edge[0]];
- Real p1Min = mProjectionMin[edge[1]];
- bool clipMin = (p0Min < (Real)0 && p1Min >(Real)0) || (p0Min > (Real)0 && p1Min < (Real)0);
- if (clipMin)
- {
- mVertices[v0] = (p1Min * mVertices[edge[0]] - p0Min * mVertices[edge[1]]) / (p1Min - p0Min);
- }
- // Process the hmax-plane.
- Real p0Max = mProjectionMax[edge[0]];
- Real p1Max = mProjectionMax[edge[1]];
- bool clipMax = (p0Max < (Real)0 && p1Max >(Real)0) || (p0Max > (Real)0 && p1Max < (Real)0);
- if (clipMax)
- {
- mVertices[v1] = (p1Max * mVertices[edge[0]] - p0Max * mVertices[edge[1]]) / (p1Max - p0Max);
- }
- // Get the candidate edges that are contained by the box edges.
- if (clipMin)
- {
- if (clipMax)
- {
- InsertEdge(v0, v1);
- }
- else
- {
- if (p0Min < (Real)0)
- {
- InsertEdge(edge[0], v0);
- }
- else // p1Min < 0
- {
- InsertEdge(edge[1], v0);
- }
- }
- }
- else if (clipMax)
- {
- if (p0Max < (Real)0)
- {
- InsertEdge(edge[0], v1);
- }
- else // p1Max < 0
- {
- InsertEdge(edge[1], v1);
- }
- }
- else
- {
- // No clipping has occurred. If the edge is inside the box,
- // it is a candidate edge. To be inside the box, the p*min
- // and p*max values must be nonpositive.
- if (p0Min <= (Real)0 && p1Min <= (Real)0 && p0Max <= (Real)0 && p1Max <= (Real)0)
- {
- InsertEdge(edge[0], edge[1]);
- }
- }
- }
- }
- void ComputeCandidatesOnBoxFaces()
- {
- Real p0, p1, p2, p3;
- size_t b0, b1, b2, b3, index;
- for (size_t i = 0; i < NUM_BOX_FACES; ++i)
- {
- auto const& face = mFaces[i];
- // Process the hmin-plane.
- p0 = mProjectionMin[face.v[0]];
- p1 = mProjectionMin[face.v[1]];
- p2 = mProjectionMin[face.v[2]];
- p3 = mProjectionMin[face.v[3]];
- b0 = (p0 < (Real)0 ? 0 : (p0 > (Real)0 ? 2 : 1));
- b1 = (p1 < (Real)0 ? 0 : (p1 > (Real)0 ? 2 : 1));
- b2 = (p2 < (Real)0 ? 0 : (p2 > (Real)0 ? 2 : 1));
- b3 = (p3 < (Real)0 ? 0 : (p3 > (Real)0 ? 2 : 1));
- index = b3 + 3 * (b2 + 3 * (b1 + 3 * b0));
- (this->*mConfiguration[index])(VERTEX_MIN_BASE, face);
- // Process the hmax-plane.
- p0 = mProjectionMax[face.v[0]];
- p1 = mProjectionMax[face.v[1]];
- p2 = mProjectionMax[face.v[2]];
- p3 = mProjectionMax[face.v[3]];
- b0 = (p0 < (Real)0 ? 0 : (p0 > (Real)0 ? 2 : 1));
- b1 = (p1 < (Real)0 ? 0 : (p1 > (Real)0 ? 2 : 1));
- b2 = (p2 < (Real)0 ? 0 : (p2 > (Real)0 ? 2 : 1));
- b3 = (p3 < (Real)0 ? 0 : (p3 > (Real)0 ? 2 : 1));
- index = b3 + 3 * (b2 + 3 * (b1 + 3 * b0));
- (this->*mConfiguration[index])(VERTEX_MAX_BASE, face);
- }
- }
- void ClearCandidates()
- {
- for (size_t i = 0; i < mNumCandidateEdges; ++i)
- {
- auto const& edge = mCandidateEdges[i];
- mAdjacencyMatrix[edge[0]][edge[1]] = 0;
- mAdjacencyMatrix[edge[1]][edge[0]] = 0;
- }
- mNumCandidateEdges = 0;
- }
- void InsertEdge(size_t v0, size_t v1)
- {
- if (mAdjacencyMatrix[v0][v1] == 0)
- {
- mAdjacencyMatrix[v0][v1] = 1;
- mAdjacencyMatrix[v1][v0] = 1;
- mCandidateEdges[mNumCandidateEdges] = { v0, v1 };
- ++mNumCandidateEdges;
- }
- }
- // The 81 possible configurations for a box face. The N stands for a
- // '-', the Z stands for '0' and the P stands for '+'. These are
- // listed in the order that maps to the array mConfiguration. Thus,
- // NNNN maps to mConfiguration[0], NNNZ maps to mConfiguration[1], and
- // so on.
- void NNNN_0(size_t, Face const&)
- {
- }
- void NNNZ_1(size_t, Face const&)
- {
- }
- void NNNP_2(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[2], base + face.e[3]);
- }
- void NNZN_3(size_t, Face const&)
- {
- }
- void NNZZ_4(size_t, Face const&)
- {
- }
- void NNZP_5(size_t base, Face const& face)
- {
- InsertEdge(face.v[2], base + face.e[3]);
- }
- void NNPN_6(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[1], base + face.e[2]);
- }
- void NNPZ_7(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[1], face.v[3]);
- }
- void NNPP_8(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[1], base + face.e[3]);
- }
- void NZNN_9(size_t, Face const&)
- {
- }
- void NZNZ_10(size_t, Face const&)
- {
- }
- void NZNP_11(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[2], face.v[3]);
- InsertEdge(base + face.e[3], face.v[3]);
- }
- void NZZN_12(size_t, Face const&)
- {
- }
- void NZZZ_13(size_t, Face const&)
- {
- }
- void NZZP_14(size_t base, Face const& face)
- {
- InsertEdge(face.v[2], face.v[3]);
- InsertEdge(base + face.e[3], face.v[3]);
- }
- void NZPN_15(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[2], face.v[1]);
- }
- void NZPZ_16(size_t, Face const& face)
- {
- InsertEdge(face.v[1], face.v[3]);
- }
- void NZPP_17(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[3], face.v[1]);
- }
- void NPNN_18(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], base + face.e[1]);
- }
- void NPNZ_19(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], face.v[1]);
- InsertEdge(base + face.e[1], face.v[1]);
- }
- void NPNP_20(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], face.v[1]);
- InsertEdge(base + face.e[1], face.v[1]);
- InsertEdge(base + face.e[2], face.v[3]);
- InsertEdge(base + face.e[3], face.v[3]);
- }
- void NPZN_21(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], face.v[2]);
- }
- void NPZZ_22(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], face.v[1]);
- InsertEdge(face.v[1], face.v[2]);
- }
- void NPZP_23(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], face.v[1]);
- InsertEdge(face.v[1], face.v[2]);
- InsertEdge(base + face.e[3], face.v[2]);
- InsertEdge(face.v[2], face.v[3]);
- }
- void NPPN_24(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], base + face.e[2]);
- }
- void NPPZ_25(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], face.v[3]);
- }
- void NPPP_26(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], base + face.e[3]);
- }
- void ZNNN_27(size_t, Face const&)
- {
- }
- void ZNNZ_28(size_t, Face const&)
- {
- }
- void ZNNP_29(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[2], face.v[0]);
- }
- void ZNZN_30(size_t, Face const&)
- {
- }
- void ZNZZ_31(size_t, Face const&)
- {
- }
- void ZNZP_32(size_t, Face const& face)
- {
- InsertEdge(face.v[0], face.v[2]);
- }
- void ZNPN_33(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[1], face.v[2]);
- InsertEdge(base + face.e[2], face.v[2]);
- }
- void ZNPZ_34(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[1], face.v[2]);
- InsertEdge(face.v[2], face.v[3]);
- }
- void ZNPP_35(size_t base, Face const& face)
- {
- InsertEdge(face.v[0], base + face.e[1]);
- }
- void ZZNN_36(size_t, Face const&)
- {
- }
- void ZZNZ_37(size_t, Face const&)
- {
- }
- void ZZNP_38(size_t base, Face const& face)
- {
- InsertEdge(face.v[0], face.v[3]);
- InsertEdge(face.v[3], base + face.e[2]);
- }
- void ZZZN_39(size_t, Face const&)
- {
- }
- void ZZZZ_40(size_t, Face const&)
- {
- }
- void ZZZP_41(size_t, Face const& face)
- {
- InsertEdge(face.v[0], face.v[3]);
- InsertEdge(face.v[3], face.v[2]);
- }
- void ZZPN_42(size_t base, Face const& face)
- {
- InsertEdge(face.v[1], face.v[2]);
- InsertEdge(face.v[2], base + face.e[2]);
- }
- void ZZPZ_43(size_t, Face const& face)
- {
- InsertEdge(face.v[1], face.v[2]);
- InsertEdge(face.v[2], face.v[3]);
- }
- void ZZPP_44(size_t, Face const&)
- {
- }
- void ZPNN_45(size_t base, Face const& face)
- {
- InsertEdge(face.v[0], base + face.e[1]);
- }
- void ZPNZ_46(size_t base, Face const& face)
- {
- InsertEdge(face.v[0], face.v[1]);
- InsertEdge(face.v[1], base + face.e[1]);
- }
- void ZPNP_47(size_t base, Face const& face)
- {
- InsertEdge(face.v[0], face.v[1]);
- InsertEdge(face.v[1], base + face.e[1]);
- InsertEdge(base + face.e[2], face.v[3]);
- InsertEdge(face.v[3], face.v[0]);
- }
- void ZPZN_48(size_t, Face const& face)
- {
- InsertEdge(face.v[0], face.v[2]);
- }
- void ZPZZ_49(size_t, Face const& face)
- {
- InsertEdge(face.v[0], face.v[1]);
- InsertEdge(face.v[1], face.v[2]);
- }
- void ZPZP_50(size_t, Face const&)
- {
- }
- void ZPPN_51(size_t base, Face const& face)
- {
- InsertEdge(face.v[0], base + face.e[2]);
- }
- void ZPPZ_52(size_t, Face const&)
- {
- }
- void ZPPP_53(size_t, Face const&)
- {
- }
- void PNNN_54(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[3], base + face.e[0]);
- }
- void PNNZ_55(size_t base, Face const& face)
- {
- InsertEdge(face.v[3], base + face.e[0]);
- }
- void PNNP_56(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[2], base + face.e[0]);
- }
- void PNZN_57(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[3], face.v[0]);
- InsertEdge(face.v[0], base + face.e[0]);
- }
- void PNZZ_58(size_t base, Face const& face)
- {
- InsertEdge(face.v[3], face.v[0]);
- InsertEdge(face.v[0], base + face.e[0]);
- }
- void PNZP_59(size_t base, Face const& face)
- {
- InsertEdge(face.v[2], base + face.e[0]);
- }
- void PNPN_60(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[3], face.v[0]);
- InsertEdge(face.v[0], base + face.e[0]);
- InsertEdge(base + face.e[1], face.v[2]);
- InsertEdge(face.v[2], base + face.e[2]);
- }
- void PNPZ_61(size_t base, Face const& face)
- {
- InsertEdge(face.v[3], face.v[0]);
- InsertEdge(face.v[0], base + face.e[0]);
- InsertEdge(base + face.e[1], face.v[2]);
- InsertEdge(face.v[2], face.v[3]);
- }
- void PNPP_62(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[0], base + face.e[1]);
- }
- void PZNN_63(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[3], face.v[1]);
- }
- void PZNZ_64(size_t, Face const& face)
- {
- InsertEdge(face.v[3], face.v[1]);
- }
- void PZNP_65(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[2], face.v[1]);
- }
- void PZZN_66(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[3], face.v[0]);
- InsertEdge(face.v[0], face.v[1]);
- }
- void PZZZ_67(size_t, Face const&)
- {
- }
- void PZZP_68(size_t, Face const&)
- {
- }
- void PZPN_69(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[3], face.v[0]);
- InsertEdge(face.v[0], face.v[1]);
- InsertEdge(face.v[1], face.v[2]);
- InsertEdge(face.v[2], base + face.e[2]);
- }
- void PZPZ_70(size_t, Face const&)
- {
- }
- void PZPP_71(size_t, Face const&)
- {
- }
- void PPNN_72(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[3], base + face.e[1]);
- }
- void PPNZ_73(size_t base, Face const& face)
- {
- InsertEdge(face.v[3], base + face.e[1]);
- }
- void PPNP_74(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[2], base + face.e[1]);
- }
- void PPZN_75(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[2], face.v[2]);
- }
- void PPZZ_76(size_t, Face const&)
- {
- }
- void PPZP_77(size_t, Face const&)
- {
- }
- void PPPN_78(size_t base, Face const& face)
- {
- InsertEdge(base + face.e[3], base + face.e[2]);
- }
- void PPPZ_79(size_t, Face const&)
- {
- }
- void PPPP_80(size_t, Face const&)
- {
- }
- };
- // Template alias for convenience.
- template <typename Real>
- using TIAlignedBox3Cone3 = TIQuery<Real, AlignedBox<3, Real>, Cone<3, Real>>;
- }
|