123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Math.h>
- // Minimax polynomial approximations to cos(x). The polynomial p(x) of
- // degree D has only even-power terms, is required to have constant term 1,
- // and p(pi/2) = cos(pi/2) = 0. It minimizes the quantity
- // maximum{|cos(x) - p(x)| : x in [-pi/2,pi/2]} over all polynomials of
- // degree D subject to the constraints mentioned.
- namespace WwiseGTE
- {
- template <typename Real>
- class CosEstimate
- {
- public:
- // The input constraint is x in [-pi/2,pi/2]. For example,
- // float x; // in [-pi/2,pi/2]
- // float result = CosEstimate<float>::Degree<4>(x);
- template <int D>
- inline static Real Degree(Real x)
- {
- return Evaluate(degree<D>(), x);
- }
- // The input x can be any real number. Range reduction is used to
- // generate a value y in [-pi/2,pi/2] and a sign s for which
- // cos(y) = s*cos(x). For example,
- // float x; // x any real number
- // float result = CosEstimate<float>::DegreeRR<3>(x);
- template <int D>
- inline static Real DegreeRR(Real x)
- {
- Real y, sign;
- Reduce(x, y, sign);
- Real poly = sign * Degree<D>(y);
- return poly;
- }
- private:
- // Metaprogramming and private implementation to allow specialization
- // of a template member function.
- template <int D> struct degree {};
- inline static Real Evaluate(degree<2>, Real x)
- {
- Real xsqr = x * x;
- Real poly;
- poly = (Real)GTE_C_COS_DEG2_C1;
- poly = (Real)GTE_C_COS_DEG2_C0 + poly * xsqr;
- return poly;
- }
- inline static Real Evaluate(degree<4>, Real x)
- {
- Real xsqr = x * x;
- Real poly;
- poly = (Real)GTE_C_COS_DEG4_C2;
- poly = (Real)GTE_C_COS_DEG4_C1 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG4_C0 + poly * xsqr;
- return poly;
- }
- inline static Real Evaluate(degree<6>, Real x)
- {
- Real xsqr = x * x;
- Real poly;
- poly = (Real)GTE_C_COS_DEG6_C3;
- poly = (Real)GTE_C_COS_DEG6_C2 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG6_C1 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG6_C0 + poly * xsqr;
- return poly;
- }
- inline static Real Evaluate(degree<8>, Real x)
- {
- Real xsqr = x * x;
- Real poly;
- poly = (Real)GTE_C_COS_DEG8_C4;
- poly = (Real)GTE_C_COS_DEG8_C3 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG8_C2 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG8_C1 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG8_C0 + poly * xsqr;
- return poly;
- }
- inline static Real Evaluate(degree<10>, Real x)
- {
- Real xsqr = x * x;
- Real poly;
- poly = (Real)GTE_C_COS_DEG10_C5;
- poly = (Real)GTE_C_COS_DEG10_C4 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG10_C3 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG10_C2 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG10_C1 + poly * xsqr;
- poly = (Real)GTE_C_COS_DEG10_C0 + poly * xsqr;
- return poly;
- }
- // Support for range reduction.
- inline static void Reduce(Real x, Real& y, Real& sign)
- {
- // Map x to y in [-pi,pi], x = 2*pi*quotient + remainder.
- Real quotient = (Real)GTE_C_INV_TWO_PI * x;
- if (x >= (Real)0)
- {
- quotient = (Real)((int)(quotient + (Real)0.5));
- }
- else
- {
- quotient = (Real)((int)(quotient - (Real)0.5));
- }
- y = x - (Real)GTE_C_TWO_PI * quotient;
- // Map y to [-pi/2,pi/2] with cos(y) = sign*cos(x).
- if (y > (Real)GTE_C_HALF_PI)
- {
- y = (Real)GTE_C_PI - y;
- sign = (Real)-1;
- }
- else if (y < (Real)-GTE_C_HALF_PI)
- {
- y = (Real)-GTE_C_PI - y;
- sign = (Real)-1;
- }
- else
- {
- sign = (Real)1;
- }
- }
- };
- }
|