123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Vector.h>
- #include <Mathematics/Matrix.h>
- #include <Mathematics/ChebyshevRatio.h>
- // A quaternion is of the form
- // q = x * i + y * j + z * k + w * 1 = x * i + y * j + z * k + w
- // where w, x, y, and z are real numbers. The scalar and vector parts are
- // Vector(q) = x * i + y * j + z * k
- // Scalar(q) = w
- // q = Vector(q) + Scalar(q)
- // I assume that you are familiar with the arithmetic and algebraic properties
- // of quaternions. See
- // https://www.geometrictools.com/Documentation/Quaternions.pdf
- namespace WwiseGTE
- {
- template <typename Real>
- class Quaternion
- {
- public:
- // The quaternions are of the form q = x*i + y*j + z*k + w. In tuple
- // form, q = (x,y,z,w).
- // Construction. The default constructor does not initialize the
- // members.
- Quaternion() = default;
- Quaternion(Real x, Real y, Real z, Real w)
- {
- mTuple[0] = x;
- mTuple[1] = y;
- mTuple[2] = z;
- mTuple[3] = w;
- }
- // Member access.
- inline Real const& operator[](int i) const
- {
- return mTuple[i];
- }
- inline Real& operator[](int i)
- {
- return mTuple[i];
- }
- // Comparisons.
- inline bool operator==(Quaternion const& q) const
- {
- return mTuple == q.mTuple;
- }
- inline bool operator!=(Quaternion const& q) const
- {
- return mTuple != q.mTuple;
- }
- inline bool operator<(Quaternion const& q) const
- {
- return mTuple < q.mTuple;
- }
- inline bool operator<=(Quaternion const& q) const
- {
- return mTuple <= q.mTuple;
- }
- inline bool operator>(Quaternion const& q) const
- {
- return mTuple > q.mTuple;
- }
- inline bool operator>=(Quaternion const& q) const
- {
- return mTuple >= q.mTuple;
- }
- // Special quaternions.
- // z = 0*i + 0*j + 0*k + 0
- static Quaternion Zero()
- {
- return Quaternion((Real)0, (Real)0, (Real)0, (Real)0);
- }
- // i = 1*i + 0*j + 0*k + 0
- static Quaternion I()
- {
- return Quaternion((Real)1, (Real)0, (Real)0, (Real)0);
- }
- // j = 0*i + 1*j + 0*k + 0
- static Quaternion J()
- {
- return Quaternion((Real)0, (Real)1, (Real)0, (Real)0);
- }
- // k = 0*i + 0*j + 1*k + 0
- static Quaternion K()
- {
- return Quaternion((Real)0, (Real)0, (Real)1, (Real)0);
- }
- // 1 = 0*i + 0*j + 0*k + 1
- static Quaternion Identity()
- {
- return Quaternion((Real)0, (Real)0, (Real)0, (Real)1);
- }
- protected:
- std::array<Real, 4> mTuple;
- };
- // Unary operations.
- template <typename Real>
- Quaternion<Real> operator+(Quaternion<Real> const& q)
- {
- return q;
- }
- template <typename Real>
- Quaternion<Real> operator-(Quaternion<Real> const& q)
- {
- Quaternion<Real> result;
- for (int i = 0; i < 4; ++i)
- {
- result[i] = -q[i];
- }
- return result;
- }
- // Linear algebraic operations.
- template <typename Real>
- Quaternion<Real> operator+(Quaternion<Real> const& q0, Quaternion<Real> const& q1)
- {
- Quaternion<Real> result = q0;
- return result += q1;
- }
- template <typename Real>
- Quaternion<Real> operator-(Quaternion<Real> const& q0, Quaternion<Real> const& q1)
- {
- Quaternion<Real> result = q0;
- return result -= q1;
- }
- template <typename Real>
- Quaternion<Real> operator*(Quaternion<Real> const& q, Real scalar)
- {
- Quaternion<Real> result = q;
- return result *= scalar;
- }
- template <typename Real>
- Quaternion<Real> operator*(Real scalar, Quaternion<Real> const& q)
- {
- Quaternion<Real> result = q;
- return result *= scalar;
- }
- template <typename Real>
- Quaternion<Real> operator/(Quaternion<Real> const& q, Real scalar)
- {
- Quaternion<Real> result = q;
- return result /= scalar;
- }
- template <typename Real>
- Quaternion<Real>& operator+=(Quaternion<Real>& q0, Quaternion<Real> const& q1)
- {
- for (int i = 0; i < 4; ++i)
- {
- q0[i] += q1[i];
- }
- return q0;
- }
- template <typename Real>
- Quaternion<Real>& operator-=(Quaternion<Real>& q0, Quaternion<Real> const& q1)
- {
- for (int i = 0; i < 4; ++i)
- {
- q0[i] -= q1[i];
- }
- return q0;
- }
- template <typename Real>
- Quaternion<Real>& operator*=(Quaternion<Real>& q, Real scalar)
- {
- for (int i = 0; i < 4; ++i)
- {
- q[i] *= scalar;
- }
- return q;
- }
- template <typename Real>
- Quaternion<Real>& operator/=(Quaternion<Real>& q, Real scalar)
- {
- if (scalar != (Real)0)
- {
- for (int i = 0; i < 4; ++i)
- {
- q[i] /= scalar;
- }
- }
- else
- {
- for (int i = 0; i < 4; ++i)
- {
- q[i] = (Real)0;
- }
- }
- return q;
- }
- // Geometric operations.
- template <typename Real>
- Real Dot(Quaternion<Real> const& q0, Quaternion<Real> const& q1)
- {
- Real dot = q0[0] * q1[0];
- for (int i = 1; i < 4; ++i)
- {
- dot += q0[i] * q1[i];
- }
- return dot;
- }
- template <typename Real>
- Real Length(Quaternion<Real> const& q)
- {
- return std::sqrt(Dot(q, q));
- }
- template <typename Real>
- Real Normalize(Quaternion<Real>& q)
- {
- Real length = std::sqrt(Dot(q, q));
- if (length > (Real)0)
- {
- q /= length;
- }
- else
- {
- for (int i = 0; i < 4; ++i)
- {
- q[i] = (Real)0;
- }
- }
- return length;
- }
- // Multiplication of quaternions. This operation is not generally
- // commutative; that is, q0*q1 and q1*q0 are not usually the same value.
- // (x0*i + y0*j + z0*k + w0)*(x1*i + y1*j + z1*k + w1)
- // =
- // i*(+x0*w1 + y0*z1 - z0*y1 + w0*x1) +
- // j*(-x0*z1 + y0*w1 + z0*x1 + w0*y1) +
- // k*(+x0*y1 - y0*x1 + z0*w1 + w0*z1) +
- // 1*(-x0*x1 - y0*y1 - z0*z1 + w0*w1)
- template <typename Real>
- Quaternion<Real> operator*(Quaternion<Real> const& q0, Quaternion<Real> const& q1)
- {
- // (x0*i + y0*j + z0*k + w0)*(x1*i + y1*j + z1*k + w1)
- // =
- // i*(+x0*w1 + y0*z1 - z0*y1 + w0*x1) +
- // j*(-x0*z1 + y0*w1 + z0*x1 + w0*y1) +
- // k*(+x0*y1 - y0*x1 + z0*w1 + w0*z1) +
- // 1*(-x0*x1 - y0*y1 - z0*z1 + w0*w1)
- return Quaternion<Real>
- (
- +q0[0] * q1[3] + q0[1] * q1[2] - q0[2] * q1[1] + q0[3] * q1[0],
- -q0[0] * q1[2] + q0[1] * q1[3] + q0[2] * q1[0] + q0[3] * q1[1],
- +q0[0] * q1[1] - q0[1] * q1[0] + q0[2] * q1[3] + q0[3] * q1[2],
- -q0[0] * q1[0] - q0[1] * q1[1] - q0[2] * q1[2] + q0[3] * q1[3]
- );
- }
- // For a nonzero quaternion q = (x,y,z,w), inv(q) = (-x,-y,-z,w)/|q|^2,
- // where |q| is the length of the quaternion. When q is zero, the
- // function returns zero, which is considered to be an improbable case.
- template <typename Real>
- Quaternion<Real> Inverse(Quaternion<Real> const& q)
- {
- Real sqrLen = Dot(q, q);
- if (sqrLen > (Real)0)
- {
- Quaternion<Real> inverse = Conjugate(q) / sqrLen;
- return inverse;
- }
- else
- {
- return Quaternion<Real>::Zero();
- }
- }
- // The conjugate of q = (x,y,z,w) is conj(q) = (-x,-y,-z,w).
- template <typename Real>
- Quaternion<Real> Conjugate(Quaternion<Real> const& q)
- {
- return Quaternion<Real>(-q[0], -q[1], -q[2], +q[3]);
- }
- // Rotate a vector using quaternion multiplication. The input quaternion
- // must be unit length.
- template <typename Real>
- Vector<4, Real> Rotate(Quaternion<Real> const& q, Vector<4, Real> const& v)
- {
- Quaternion<Real> input(v[0], v[1], v[2], (Real)0);
- Quaternion<Real> output = q * input * Conjugate(q);
- Vector<4, Real> u{ output[0], output[1], output[2], (Real)0 };
- return u;
- }
- // The spherical linear interpolation (slerp) of unit-length quaternions
- // q0 and q1 for t in [0,1] is
- // slerp(t,q0,q1) = [sin(t*theta)*q0 + sin((1-t)*theta)*q1]/sin(theta)
- // where theta is the angle between q0 and q1 [cos(theta) = Dot(q0,q1)].
- // This function is a parameterization of the great spherical arc between
- // q0 and q1 on the unit hypersphere. Moreover, the parameterization is
- // one of normalized arclength--a particle traveling along the arc through
- // time t does so with constant speed.
- //
- // When using slerp in animations involving sequences of quaternions, it
- // is typical that the quaternions are preprocessed so that consecutive
- // ones form an acute angle A in [0,pi/2]. Other preprocessing can help
- // with performance. See the function comments below.
- //
- // See GteSlerpEstimate.{h,inl} for various approximations, including
- // SLERP<Real>::EstimateRPH that gives good performance and accurate
- // results for preprocessed quaternions.
- // The angle between q0 and q1 is in [0,pi). There are no angle
- // restrictions and nothing is precomputed.
- template <typename Real>
- Quaternion<Real> Slerp(Real t, Quaternion<Real> const& q0, Quaternion<Real> const& q1)
- {
- Real cosA = Dot(q0, q1);
- Real sign;
- if (cosA >= (Real)0)
- {
- sign = (Real)1;
- }
- else
- {
- cosA = -cosA;
- sign = (Real)-1;
- }
- Real f0, f1;
- ChebyshevRatio<Real>::Get(t, cosA, f0, f1);
- return q0 * f0 + q1 * (sign * f1);
- }
- // The angle between q0 and q1 must be in [0,pi/2]. The suffix R is for
- // 'Restricted'. The preprocessing code is
- // Quaternion<Real> q[n]; // assuming initialized
- // for (i0 = 0, i1 = 1; i1 < n; i0 = i1++)
- // {
- // cosA = Dot(q[i0], q[i1]);
- // if (cosA < 0)
- // {
- // q[i1] = -q[i1]; // now Dot(q[i0], q[i]1) >= 0
- // }
- // }
- template <typename Real>
- Quaternion<Real> SlerpR(Real t, Quaternion<Real> const& q0, Quaternion<Real> const& q1)
- {
- Real f0, f1;
- ChebyshevRatio<Real>::Get(t, Dot(q0, q1), f0, f1);
- return q0 * f0 + q1 * f1;
- }
- // The angle between q0 and q1 must be in [0,pi/2]. The suffix R is for
- // 'Restricted' and the suffix P is for 'Preprocessed'. The preprocessing
- // code is
- // Quaternion<Real> q[n]; // assuming initialized
- // Real cosA[n-1], omcosA[n-1]; // to be precomputed
- // for (i0 = 0, i1 = 1; i1 < n; i0 = i1++)
- // {
- // cs = Dot(q[i0], q[i1]);
- // if (cosA[i0] < 0)
- // {
- // q[i1] = -q[i1];
- // cs = -cs;
- // }
- //
- // // for Quaterion<Real>::SlerpRP
- // cosA[i0] = cs;
- //
- // // for SLERP<Real>::EstimateRP
- // omcosA[i0] = 1 - cs;
- // }
- template <typename Real>
- Quaternion<Real> SlerpRP(Real t, Quaternion<Real> const& q0, Quaternion<Real> const& q1, Real cosA)
- {
- Real f0, f1;
- ChebyshevRatio<Real>::Get(t, cosA, f0, f1);
- return q0 * f0 + q1 * f1;
- }
- // The angle between q0 and q1 is A and must be in [0,pi/2]. The suffix R
- // is for 'Restricted', the suffix P is for 'Preprocessed' and the suffix
- // H is for 'Half' (the quaternion qh halfway between q0 and q1 is
- // precomputed). Quaternion qh is slerp(1/2,q0,q1) = (q0+q1)/|q0+q1|, so
- // the angle between q0 and qh is A/2 and the angle between qh and q1 is
- // A/2. The preprocessing code is
- // Quaternion<Real> q[n]; // assuming initialized
- // Quaternion<Real> qh[n-1]; // to be precomputed
- // Real omcosAH[n-1]; // to be precomputed
- // for (i0 = 0, i1 = 1; i1 < n; i0 = i1++)
- // {
- // cosA = Dot(q[i0], q[i1]);
- // if (cosA < 0)
- // {
- // q[i1] = -q[i1];
- // cosA = -cosA;
- // }
- //
- // // for Quaternion<Real>::SlerpRPH and SLERP<Real>::EstimateRPH
- // cosAH[i0] = sqrt((1+cosA)/2);
- // qh[i0] = (q0 + q1) / (2 * cosAH[i0]);
- //
- // // for SLERP<Real>::EstimateRPH
- // omcosAH[i0] = 1 - cosAH[i0];
- // }
- template <typename Real>
- Quaternion<Real> SlerpRPH(Real t, Quaternion<Real> const& q0, Quaternion<Real> const& q1,
- Quaternion<Real> const& qh, Real cosAH)
- {
- Real f0, f1;
- Real twoT = static_cast<Real>(2) * t;
- if (twoT <= static_cast<Real>(1))
- {
- ChebyshevRatio<Real>::Get(twoT, cosAH, f0, f1);
- return q0 * f0 + qh * f1;
- }
- else
- {
- ChebyshevRatio<Real>::Get(twoT - static_cast<Real>(1), cosAH, f0, f1);
- return qh * f0 + q1 * f1;
- }
- }
- }
|