| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 | // David Eberly, Geometric Tools, Redmond WA 98052// Copyright (c) 1998-2020// Distributed under the Boost Software License, Version 1.0.// https://www.boost.org/LICENSE_1_0.txt// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt// Version: 4.0.2019.08.13#pragma once#include <Mathematics/Vector3.h>namespace WwiseGTE{    // Template alias for convenience.    template <typename Real>    using Vector4 = Vector<4, Real>;    // In Vector3.h, the Vector3 Cross, UnitCross, and DotCross have a    // template parameter N that should be 3 or 4.  The latter case supports    // affine vectors in 4D (last component w = 0) when you want to use    // 4-tuples and 4x4 matrices for affine algebra.  Thus, you may use those    // template functions for Vector4.    // Compute the hypercross product using the formal determinant:    //   hcross = det{{e0,e1,e2,e3},{x0,x1,x2,x3},{y0,y1,y2,y3},{z0,z1,z2,z3}}    // where e0 = (1,0,0,0), e1 = (0,1,0,0), e2 = (0,0,1,0), e3 = (0,0,0,1),    // v0 = (x0,x1,x2,x3), v1 = (y0,y1,y2,y3), and v2 = (z0,z1,z2,z3).    template <typename Real>    Vector4<Real> HyperCross(Vector4<Real> const& v0, Vector4<Real> const& v1, Vector4<Real> const& v2)    {        Real m01 = v0[0] * v1[1] - v0[1] * v1[0];  // x0*y1 - y0*x1        Real m02 = v0[0] * v1[2] - v0[2] * v1[0];  // x0*z1 - z0*x1        Real m03 = v0[0] * v1[3] - v0[3] * v1[0];  // x0*w1 - w0*x1        Real m12 = v0[1] * v1[2] - v0[2] * v1[1];  // y0*z1 - z0*y1        Real m13 = v0[1] * v1[3] - v0[3] * v1[1];  // y0*w1 - w0*y1        Real m23 = v0[2] * v1[3] - v0[3] * v1[2];  // z0*w1 - w0*z1        return Vector4<Real>        {            +m23 * v2[1] - m13 * v2[2] + m12 * v2[3],  // +m23*y2 - m13*z2 + m12*w2            -m23 * v2[0] + m03 * v2[2] - m02 * v2[3],  // -m23*x2 + m03*z2 - m02*w2            +m13 * v2[0] - m03 * v2[1] + m01 * v2[3],  // +m13*x2 - m03*y2 + m01*w2            -m12 * v2[0] + m02 * v2[1] - m01 * v2[2]   // -m12*x2 + m02*y2 - m01*z2        };    }    // Compute the normalized hypercross product.    template <typename Real>    Vector4<Real> UnitHyperCross(Vector4<Real> const& v0,        Vector4<Real> const& v1, Vector4<Real> const& v2, bool robust = false)    {        Vector4<Real> unitHyperCross = HyperCross(v0, v1, v2);        Normalize(unitHyperCross, robust);        return unitHyperCross;    }    // Compute Dot(HyperCross((x0,x1,x2,x3),(y0,y1,y2,y3),(z0,z1,z2,z3)),    // (w0,w1,w2,w3)), where v0 = (x0,x1,x2,x3), v1 = (y0,y1,y2,y3),    // v2 = (z0,z1,z2,z3), and v3 = (w0,w1,w2,w3).    template <typename Real>    Real DotHyperCross(Vector4<Real> const& v0, Vector4<Real> const& v1,        Vector4<Real> const& v2, Vector4<Real> const& v3)    {        return Dot(HyperCross(v0, v1, v2), v3);    }    // Compute a right-handed orthonormal basis for the orthogonal complement    // of the input vectors.  The function returns the smallest length of the    // unnormalized vectors computed during the process.  If this value is    // nearly zero, it is possible that the inputs are linearly dependent    // (within numerical round-off errors).  On input, numInputs must be 1, 2    // or 3, and v[0] through v[numInputs-1] must be initialized.  On output,    // the vectors v[0] through v[3] form an orthonormal set.    template <typename Real>    Real ComputeOrthogonalComplement(int numInputs, Vector4<Real>* v, bool robust = false)    {        if (numInputs == 1)        {            int maxIndex = 0;            Real maxAbsValue = std::fabs(v[0][0]);            for (int i = 1; i < 4; ++i)            {                Real absValue = std::fabs(v[0][i]);                if (absValue > maxAbsValue)                {                    maxIndex = i;                    maxAbsValue = absValue;                }            }            if (maxIndex < 2)            {                v[1][0] = -v[0][1];                v[1][1] = +v[0][0];                v[1][2] = (Real)0;                v[1][3] = (Real)0;            }            else if (maxIndex == 3)            {                // Generally, you can skip this clause and swap the last two                // components.  However, by swapping 2 and 3 in this case, we                // allow the function to work properly when the inputs are 3D                // vectors represented as 4D affine vectors (w = 0).                v[1][0] = (Real)0;                v[1][1] = +v[0][2];                v[1][2] = -v[0][1];                v[1][3] = (Real)0;            }            else            {                v[1][0] = (Real)0;                v[1][1] = (Real)0;                v[1][2] = -v[0][3];                v[1][3] = +v[0][2];            }            numInputs = 2;        }        if (numInputs == 2)        {            Real det[6] =            {                v[0][0] * v[1][1] - v[1][0] * v[0][1],                v[0][0] * v[1][2] - v[1][0] * v[0][2],                v[0][0] * v[1][3] - v[1][0] * v[0][3],                v[0][1] * v[1][2] - v[1][1] * v[0][2],                v[0][1] * v[1][3] - v[1][1] * v[0][3],                v[0][2] * v[1][3] - v[1][2] * v[0][3]            };            int maxIndex = 0;            Real maxAbsValue = std::fabs(det[0]);            for (int i = 1; i < 6; ++i)            {                Real absValue = std::fabs(det[i]);                if (absValue > maxAbsValue)                {                    maxIndex = i;                    maxAbsValue = absValue;                }            }            if (maxIndex == 0)            {                v[2] = { -det[4], +det[2], (Real)0, -det[0] };            }            else if (maxIndex <= 2)            {                v[2] = { +det[5], (Real)0, -det[2], +det[1] };            }            else            {                v[2] = { (Real)0, -det[5], +det[4], -det[3] };            }            numInputs = 3;        }        if (numInputs == 3)        {            v[3] = HyperCross(v[0], v[1], v[2]);            return Orthonormalize<4, Real>(4, v, robust);        }        return (Real)0;    }}
 |