123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2020.01.10
- #pragma once
- #include <Mathematics/Vector.h>
- namespace WwiseGTE
- {
- // Template alias for convenience.
- template <typename Real>
- using Vector2 = Vector<2, Real>;
- // Compute the perpendicular using the formal determinant,
- // perp = det{{e0,e1},{x0,x1}} = (x1,-x0)
- // where e0 = (1,0), e1 = (0,1), and v = (x0,x1).
- template <typename Real>
- Vector2<Real> Perp(Vector2<Real> const& v)
- {
- return Vector2<Real>{ v[1], -v[0] };
- }
- // Compute the normalized perpendicular.
- template <typename Real>
- Vector2<Real> UnitPerp(Vector2<Real> const& v, bool robust = false)
- {
- Vector2<Real> unitPerp{ v[1], -v[0] };
- Normalize(unitPerp, robust);
- return unitPerp;
- }
- // Compute Dot((x0,x1),Perp(y0,y1)) = x0*y1 - x1*y0, where v0 = (x0,x1)
- // and v1 = (y0,y1).
- template <typename Real>
- Real DotPerp(Vector2<Real> const& v0, Vector2<Real> const& v1)
- {
- return Dot(v0, Perp(v1));
- }
- // Compute a right-handed orthonormal basis for the orthogonal complement
- // of the input vectors. The function returns the smallest length of the
- // unnormalized vectors computed during the process. If this value is
- // nearly zero, it is possible that the inputs are linearly dependent
- // (within numerical round-off errors). On input, numInputs must be 1 and
- // v[0] must be initialized. On output, the vectors v[0] and v[1] form an
- // orthonormal set.
- template <typename Real>
- Real ComputeOrthogonalComplement(int numInputs, Vector2<Real>* v, bool robust = false)
- {
- if (numInputs == 1)
- {
- v[1] = -Perp(v[0]);
- return Orthonormalize<2, Real>(2, v, robust);
- }
- return (Real)0;
- }
- // Compute the barycentric coordinates of the point P with respect to the
- // triangle <V0,V1,V2>, P = b0*V0 + b1*V1 + b2*V2, where b0 + b1 + b2 = 1.
- // The return value is 'true' iff {V0,V1,V2} is a linearly independent
- // set. Numerically, this is measured by |det[V0 V1 V2]| <= epsilon. The
- // values bary[] are valid only when the return value is 'true' but set to
- // zero when the return value is 'false'.
- template <typename Real>
- bool ComputeBarycentrics(Vector2<Real> const& p, Vector2<Real> const& v0,
- Vector2<Real> const& v1, Vector2<Real> const& v2, Real bary[3],
- Real epsilon = (Real)0)
- {
- // Compute the vectors relative to V2 of the triangle.
- Vector2<Real> diff[3] = { v0 - v2, v1 - v2, p - v2 };
- Real det = DotPerp(diff[0], diff[1]);
- if (det < -epsilon || det > epsilon)
- {
- Real invDet = (Real)1 / det;
- bary[0] = DotPerp(diff[2], diff[1]) * invDet;
- bary[1] = DotPerp(diff[0], diff[2]) * invDet;
- bary[2] = (Real)1 - bary[0] - bary[1];
- return true;
- }
- for (int i = 0; i < 3; ++i)
- {
- bary[i] = (Real)0;
- }
- return false;
- }
- // Get intrinsic information about the input array of vectors. The return
- // value is 'true' iff the inputs are valid (numVectors > 0, v is not
- // null, and epsilon >= 0), in which case the class members are valid.
- template <typename Real>
- class IntrinsicsVector2
- {
- public:
- // The constructor sets the class members based on the input set.
- IntrinsicsVector2(int numVectors, Vector2<Real> const* v, Real inEpsilon)
- :
- epsilon(inEpsilon),
- dimension(0),
- maxRange((Real)0),
- origin{ (Real)0, (Real)0 },
- extremeCCW(false)
- {
- min[0] = (Real)0;
- min[1] = (Real)0;
- direction[0] = { (Real)0, (Real)0 };
- direction[1] = { (Real)0, (Real)0 };
- extreme[0] = 0;
- extreme[1] = 0;
- extreme[2] = 0;
- if (numVectors > 0 && v && epsilon >= (Real)0)
- {
- // Compute the axis-aligned bounding box for the input
- // vectors. Keep track of the indices into 'vectors' for the
- // current min and max.
- int j, indexMin[2], indexMax[2];
- for (j = 0; j < 2; ++j)
- {
- min[j] = v[0][j];
- max[j] = min[j];
- indexMin[j] = 0;
- indexMax[j] = 0;
- }
- int i;
- for (i = 1; i < numVectors; ++i)
- {
- for (j = 0; j < 2; ++j)
- {
- if (v[i][j] < min[j])
- {
- min[j] = v[i][j];
- indexMin[j] = i;
- }
- else if (v[i][j] > max[j])
- {
- max[j] = v[i][j];
- indexMax[j] = i;
- }
- }
- }
- // Determine the maximum range for the bounding box.
- maxRange = max[0] - min[0];
- extreme[0] = indexMin[0];
- extreme[1] = indexMax[0];
- Real range = max[1] - min[1];
- if (range > maxRange)
- {
- maxRange = range;
- extreme[0] = indexMin[1];
- extreme[1] = indexMax[1];
- }
- // The origin is either the vector of minimum x0-value or
- // vector of minimum x1-value.
- origin = v[extreme[0]];
- // Test whether the vector set is (nearly) a vector.
- if (maxRange <= epsilon)
- {
- dimension = 0;
- for (j = 0; j < 2; ++j)
- {
- extreme[j + 1] = extreme[0];
- }
- return;
- }
- // Test whether the vector set is (nearly) a line segment. We
- // need direction[1] to span the orthogonal complement of
- // direction[0].
- direction[0] = v[extreme[1]] - origin;
- Normalize(direction[0], false);
- direction[1] = -Perp(direction[0]);
- // Compute the maximum distance of the points from the line
- // origin+t*direction[0].
- Real maxDistance = (Real)0;
- Real maxSign = (Real)0;
- extreme[2] = extreme[0];
- for (i = 0; i < numVectors; ++i)
- {
- Vector2<Real> diff = v[i] - origin;
- Real distance = Dot(direction[1], diff);
- Real sign = (distance > (Real)0 ? (Real)1 :
- (distance < (Real)0 ? (Real)-1 : (Real)0));
- distance = std::fabs(distance);
- if (distance > maxDistance)
- {
- maxDistance = distance;
- maxSign = sign;
- extreme[2] = i;
- }
- }
- if (maxDistance <= epsilon * maxRange)
- {
- // The points are (nearly) on the line
- // origin + t * direction[0].
- dimension = 1;
- extreme[2] = extreme[1];
- return;
- }
- dimension = 2;
- extremeCCW = (maxSign > (Real)0);
- return;
- }
- }
- // A nonnegative tolerance that is used to determine the intrinsic
- // dimension of the set.
- Real epsilon;
- // The intrinsic dimension of the input set, computed based on the
- // nonnegative tolerance mEpsilon.
- int dimension;
- // Axis-aligned bounding box of the input set. The maximum range is
- // the larger of max[0]-min[0] and max[1]-min[1].
- Real min[2], max[2];
- Real maxRange;
- // Coordinate system. The origin is valid for any dimension d. The
- // unit-length direction vector is valid only for 0 <= i < d. The
- // extreme index is relative to the array of input points, and is also
- // valid only for 0 <= i < d. If d = 0, all points are effectively
- // the same, but the use of an epsilon may lead to an extreme index
- // that is not zero. If d = 1, all points effectively lie on a line
- // segment. If d = 2, the points are not collinear.
- Vector2<Real> origin;
- Vector2<Real> direction[2];
- // The indices that define the maximum dimensional extents. The
- // values extreme[0] and extreme[1] are the indices for the points
- // that define the largest extent in one of the coordinate axis
- // directions. If the dimension is 2, then extreme[2] is the index
- // for the point that generates the largest extent in the direction
- // perpendicular to the line through the points corresponding to
- // extreme[0] and extreme[1]. The triangle formed by the points
- // V[extreme[0]], V[extreme[1]], and V[extreme[2]] is clockwise or
- // counterclockwise, the condition stored in extremeCCW.
- int extreme[3];
- bool extremeCCW;
- };
- }
|