123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Vector3.h>
- // A torus with origin (0,0,0), outer radius r0 and inner radius r1 (with
- // (r0 >= r1) is defined implicitly as follows. The point P0 = (x,y,z) is on
- // the torus. Its projection onto the xy-plane is P1 = (x,y,0). The circular
- // cross section of the torus that contains the projection has radius r0 and
- // center P2 = r0*(x,y,0)/sqrt(x^2+y^2). The points triangle <P0,P1,P2> is a
- // right triangle with right angle at P1. The hypotenuse <P0,P2> has length
- // r1, leg <P1,P2> has length z and leg <P0,P1> has length
- // |r0 - sqrt(x^2+y^2)|. The Pythagorean theorem says
- // z^2 + |r0 - sqrt(x^2+y^2)|^2 = r1^2. This can be algebraically
- // manipulated to
- // (x^2 + y^2 + z^2 + r0^2 - r1^2)^2 - 4 * r0^2 * (x^2 + y^2) = 0
- //
- // A parametric form is
- // x = (r0 + r1 * cos(v)) * cos(u)
- // y = (r0 + r1 * cos(v)) * sin(u)
- // z = r1 * sin(v)
- // for u in [0,2*pi) and v in [0,2*pi).
- //
- // Generally, let the torus center be C with plane of symmetry containing C
- // and having directions D0 and D1. The axis of symmetry is the line
- // containing C and having direction N (the plane normal). The radius from
- // the center of the torus is r0 and the radius of the tube of the torus is
- // r1. A point P may be written as P = C + x*D0 + y*D1 + z*N, where matrix
- // [D0 D1 N] is orthonormal and has determinant 1. Thus, x = Dot(D0,P-C),
- // y = Dot(D1,P-C) and z = Dot(N,P-C). The implicit form is
- // [|P-C|^2 + r0^2 - r1^2]^2 - 4*r0^2*[|P-C|^2 - (Dot(N,P-C))^2] = 0
- // Observe that D0 and D1 are not present in the equation, which is to be
- // expected by the symmetry. The parametric form is
- // P(u,v) = C + (r0 + r1*cos(v))*(cos(u)*D0 + sin(u)*D1) + r1*sin(v)*N
- // for u in [0,2*pi) and v in [0,2*pi).
- //
- // In the class Torus3, the members are 'center' C, 'direction0' D0,
- // 'direction1' D1, 'normal' N, 'radius0' r0 and 'radius1' r1.
- namespace WwiseGTE
- {
- template <typename Real>
- class Torus3
- {
- public:
- // Construction and destruction. The default constructor sets center
- // to (0,0,0), direction0 to (1,0,0), direction1 to (0,1,0), normal
- // to (0,0,1), radius0 to 2 and radius1 to 1.
- Torus3()
- :
- center(Vector3<Real>::Zero()),
- direction0(Vector3<Real>::Unit(0)),
- direction1(Vector3<Real>::Unit(1)),
- normal(Vector3<Real>::Unit(2)),
- radius0((Real)2),
- radius1((Real)1)
- {
- }
- Torus3(Vector3<Real> const& inCenter, Vector3<Real> const& inDirection0,
- Vector3<Real> const& inDirection1, Vector3<Real> const& inNormal,
- Real inRadius0, Real inRadius1)
- :
- center(inCenter),
- direction0(inDirection0),
- direction1(inDirection1),
- normal(inNormal),
- radius0(inRadius0),
- radius1(inRadius1)
- {
- }
- // Evaluation of the surface. The function supports derivative
- // calculation through order 2; that is, maxOrder <= 2 is required.
- // If you want only the position, pass in maxOrder of 0. If you want
- // the position and first-order derivatives, pass in maxOrder of 1,
- // and so on. The output 'values' are ordered as: position X;
- // first-order derivatives dX/du, dX/dv; second-order derivatives
- // d2X/du2, d2X/dudv, d2X/dv2. The input array 'jet' must have enough
- // storage for the specified order.
- void Evaluate(Real u, Real v, unsigned int maxOrder, Vector3<Real>* jet) const
- {
- // Compute position.
- Real csu = std::cos(u);
- Real snu = std::sin(u);
- Real csv = std::cos(v);
- Real snv = std::sin(v);
- Real r1csv = radius1 * csv;
- Real r1snv = radius1 * snv;
- Real r0pr1csv = radius0 + r1csv;
- Vector3<Real> combo0 = csu * direction0 + snu * direction1;
- Vector3<Real> r0pr1csvcombo0 = r0pr1csv * combo0;
- Vector3<Real> r1snvnormal = r1snv * normal;
- jet[0] = center + r0pr1csvcombo0 + r1snvnormal;
- if (maxOrder >= 1)
- {
- // Compute first-order derivatives.
- Vector3<Real> combo1 = -snu * direction0 + csu * direction1;
- jet[1] = r0pr1csv * combo1;
- jet[2] = -r1snv * combo0 + r1csv * normal;
- if (maxOrder == 2)
- {
- // Compute second-order derivatives.
- jet[3] = -r0pr1csvcombo0;
- jet[4] = -r1snv * combo1;
- jet[5] = -r1csv * combo0 - r1snvnormal;
- }
- }
- }
- // Reverse lookup of parameters from position.
- void GetParameters(Vector3<Real> const& X, Real& u, Real& v) const
- {
- Vector3<Real> delta = X - center;
- // (r0 + r1*cos(v))*cos(u)
- Real dot0 = Dot(direction0, delta);
- // (r0 + r1*cos(v))*sin(u)
- Real dot1 = Dot(direction1, delta);
- // r1*sin(v)
- Real dot2 = Dot(normal, delta);
- // r1*cos(v)
- Real r1csv = std::sqrt(dot0 * dot0 + dot1 * dot1) - radius0;
- u = std::atan2(dot1, dot0);
- v = std::atan2(dot2, r1csv);
- }
- Vector3<Real> center, direction0, direction1, normal;
- Real radius0, radius1;
- public:
- // Comparisons to support sorted containers.
- bool operator==(Torus3 const& torus) const
- {
- return center == torus.center
- && direction0 == torus.direction0
- && direction1 == torus.direction1
- && normal == torus.normal
- && radius0 == torus.radius0
- && radius1 == torus.radius1;
- }
- bool operator!=(Torus3 const& torus) const
- {
- return !operator==(torus);
- }
- bool operator< (Torus3 const& torus) const
- {
- if (center < torus.center)
- {
- return true;
- }
- if (center > torus.center)
- {
- return false;
- }
- if (direction0 < torus.direction0)
- {
- return true;
- }
- if (direction0 > torus.direction0)
- {
- return false;
- }
- if (direction1 < torus.direction1)
- {
- return true;
- }
- if (direction1 > torus.direction1)
- {
- return false;
- }
- if (normal < torus.normal)
- {
- return true;
- }
- if (normal > torus.normal)
- {
- return false;
- }
- if (radius0 < torus.radius0)
- {
- return true;
- }
- if (radius0 > torus.radius0)
- {
- return false;
- }
- return radius1 < torus.radius1;
- }
- bool operator<=(Torus3 const& torus) const
- {
- return !torus.operator<(*this);
- }
- bool operator> (Torus3 const& torus) const
- {
- return torus.operator<(*this);
- }
- bool operator>=(Torus3 const& torus) const
- {
- return !operator<(torus);
- }
- };
- }
|