123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/FeatureKey.h>
- // An ordered tetrahedron has V[0] = min(v0, v1, v2, v3). Let {u1, u2, u3}
- // be the set of inputs excluding the one assigned to V[0] and define
- // V[1] = min(u1, u2, u3). Choose (V[1], V[2], V[3]) to be a permutation
- // of (u1, u2, u3) so that the final storage is one of
- // (v0, v1, v2, v3), (v0, v2, v3, v1), (v0, v3, v1, v2)
- // (v1, v3, v2, v0), (v1, v2, v0, v3), (v1, v0, v3, v2)
- // (v2, v3, v0, v1), (v2, v0, v1, v3), (v2, v1, v3, v0)
- // (v3, v1, v0, v2), (v3, v0, v2, v1), (v3, v2, v1, v0)
- // The idea is that if v0 corresponds to (1, 0, 0, 0), v1 corresponds to
- // (0, 1, 0, 0), v2 corresponds to (0, 0, 1, 0), and v3 corresponds to
- // (0, 0, 0, 1), the ordering (v0, v1, v2, v3) corresponds to the 4x4 identity
- // matrix I; the rows are the specified 4-tuples. The permutation
- // (V[0], V[1], V[2], V[3]) induces a permutation of the rows of the identity
- // matrix to form a permutation matrix P with det(P) = 1 = det(I).
- //
- // An unordered tetrahedron stores a permutation of (v0, v1, v2, v3) so
- // that V[0] < V[1] < V[2] < V[3].
- namespace WwiseGTE
- {
- template <bool Ordered>
- class TetrahedronKey : public FeatureKey<4, Ordered>
- {
- public:
- TetrahedronKey()
- {
- this->V = { -1, -1, -1, -1 };
- }
- explicit TetrahedronKey(int v0, int v1, int v2, int v3)
- {
- Initialize(v0, v1, v2, v3);
- }
- // Indexing for the vertices of the triangle opposite a vertex. The
- // triangle opposite vertex j is
- // <oppositeFace[j][0], oppositeFace[j][1], oppositeFace[j][2]>
- // and is listed in counterclockwise order when viewed from outside
- // the tetrahedron.
- static inline std::array<std::array<int, 3>, 4> const& GetOppositeFace()
- {
- static std::array<std::array<int, 3>, 4> const sOppositeFace =
- {{
- { 1, 2, 3 },
- { 0, 3, 2 },
- { 0, 1, 3 },
- { 0, 2, 1 }
- }};
- return sOppositeFace;
- }
- private:
- template <bool Dummy = Ordered>
- typename std::enable_if<Dummy, void>::type
- Initialize(int v0, int v1, int v2, int v3)
- {
- int imin = 0;
- this->V[0] = v0;
- if (v1 < this->V[0])
- {
- this->V[0] = v1;
- imin = 1;
- }
- if (v2 < this->V[0])
- {
- this->V[0] = v2;
- imin = 2;
- }
- if (v3 < this->V[0])
- {
- this->V[0] = v3;
- imin = 3;
- }
- if (imin == 0)
- {
- Permute(v1, v2, v3);
- }
- else if (imin == 1)
- {
- Permute(v0, v3, v2);
- }
- else if (imin == 2)
- {
- Permute(v0, v1, v3);
- }
- else // imin == 3
- {
- Permute(v0, v2, v1);
- }
- }
- template <bool Dummy = Ordered>
- typename std::enable_if<!Dummy, void>::type
- Initialize(int v0, int v1, int v2, int v3)
- {
- this->V[0] = v0;
- this->V[1] = v1;
- this->V[2] = v2;
- this->V[3] = v3;
- std::sort(this->V.begin(), this->V.end());
- }
- template <bool Dummy = Ordered>
- typename std::enable_if<Dummy, void>::type
- Permute(int u0, int u1, int u2)
- {
- // Once V[0] is determined, create a permutation
- // (V[1], V[2], V[3]) so that (V[0], V[1], V[2], V[3]) is a
- // permutation of (v0, v1, v2, v3) that corresponds to the
- // identity matrix as mentioned in the comments at the beginning
- // of this file.
- if (u0 < u1)
- {
- if (u0 < u2)
- {
- // u0 is minimum
- this->V[1] = u0;
- this->V[2] = u1;
- this->V[3] = u2;
- }
- else
- {
- // u2 is minimum
- this->V[1] = u2;
- this->V[2] = u0;
- this->V[3] = u1;
- }
- }
- else
- {
- if (u1 < u2)
- {
- // u1 is minimum
- this->V[1] = u1;
- this->V[2] = u2;
- this->V[3] = u0;
- }
- else
- {
- // u2 is minimum
- this->V[1] = u2;
- this->V[2] = u0;
- this->V[3] = u1;
- }
- }
- }
- };
- }
|