123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Logger.h>
- #include <Mathematics/Math.h>
- #include <algorithm>
- #include <array>
- #include <cstdint>
- #include <map>
- #include <vector>
- namespace WwiseGTE
- {
- // The image type T must be one of the integer types: int8_t, int16_t,
- // int32_t, uint8_t, uint16_t or uint32_t. Internal integer computations
- // are performed using int64_t. The type Real is for extraction to
- // floating-point vertices.
- template <typename T, typename Real>
- class SurfaceExtractor
- {
- public:
- // Abstract base class.
- virtual ~SurfaceExtractor() = default;
- // The level surfaces form a graph of vertices, edges and triangles.
- // The vertices are computed as triples of nonnegative rational
- // numbers. Vertex represents the rational triple
- // (xNumer/xDenom, yNumer/yDenom, zNumer/zDenom)
- // as
- // (xNumer, xDenom, yNumer, yDenom, zNumer, zDenom)
- // where all components are nonnegative. The edges connect pairs of
- // vertices and the triangles connect triples of vertices, forming
- // a graph that represents the level set.
- struct Vertex
- {
- Vertex() = default;
- Vertex(int64_t inXNumer, int64_t inXDenom, int64_t inYNumer, int64_t inYDenom,
- int64_t inZNumer, int64_t inZDenom)
- {
- // The vertex generation leads to the numerator and
- // denominator having the same sign. This constructor changes
- // sign to ensure the numerator and denominator are both
- // positive.
- if (inXDenom > 0)
- {
- xNumer = inXNumer;
- xDenom = inXDenom;
- }
- else
- {
- xNumer = -inXNumer;
- xDenom = -inXDenom;
- }
- if (inYDenom > 0)
- {
- yNumer = inYNumer;
- yDenom = inYDenom;
- }
- else
- {
- yNumer = -inYNumer;
- yDenom = -inYDenom;
- }
- if (inZDenom > 0)
- {
- zNumer = inZNumer;
- zDenom = inZDenom;
- }
- else
- {
- zNumer = -inZNumer;
- zDenom = -inZDenom;
- }
- }
- // The non-default constructor guarantees that xDenom > 0,
- // yDenom > 0 and zDenom > 0. The following comparison operators
- // assume that the denominators are positive.
- bool operator==(Vertex const& other) const
- {
- return
- // xn0/xd0 == xn1/xd1
- xNumer * other.xDenom == other.xNumer * xDenom
- &&
- // yn0/yd0 == yn1/yd1
- yNumer * other.yDenom == other.yNumer * yDenom
- &&
- // zn0/zd0 == zn1/zd1
- zNumer * other.zDenom == other.zNumer * zDenom;
- }
- bool operator<(Vertex const& other) const
- {
- int64_t xn0txd1 = xNumer * other.xDenom;
- int64_t xn1txd0 = other.xNumer * xDenom;
- if (xn0txd1 < xn1txd0)
- {
- // xn0/xd0 < xn1/xd1
- return true;
- }
- if (xn0txd1 > xn1txd0)
- {
- // xn0/xd0 > xn1/xd1
- return false;
- }
- int64_t yn0tyd1 = yNumer * other.yDenom;
- int64_t yn1tyd0 = other.yNumer * yDenom;
- if (yn0tyd1 < yn1tyd0)
- {
- // yn0/yd0 < yn1/yd1
- return true;
- }
- if (yn0tyd1 > yn1tyd0)
- {
- // yn0/yd0 > yn1/yd1
- return false;
- }
- int64_t zn0tzd1 = zNumer * other.zDenom;
- int64_t zn1tzd0 = other.zNumer * zDenom;
- // zn0/zd0 < zn1/zd1
- return zn0tzd1 < zn1tzd0;
- }
- int64_t xNumer, xDenom, yNumer, yDenom, zNumer, zDenom;
- };
- struct Triangle
- {
- Triangle() = default;
- Triangle(int v0, int v1, int v2)
- {
- // After the code is executed, (v[0],v[1],v[2]) is a cyclic
- // permutation of (v0,v1,v2) with v[0] = min{v0,v1,v2}.
- if (v0 < v1)
- {
- if (v0 < v2)
- {
- v[0] = v0;
- v[1] = v1;
- v[2] = v2;
- }
- else
- {
- v[0] = v2;
- v[1] = v0;
- v[2] = v1;
- }
- }
- else
- {
- if (v1 < v2)
- {
- v[0] = v1;
- v[1] = v2;
- v[2] = v0;
- }
- else
- {
- v[0] = v2;
- v[1] = v0;
- v[2] = v1;
- }
- }
- }
- bool operator==(Triangle const& other) const
- {
- return v[0] == other.v[0] && v[1] == other.v[1] && v[2] == other.v[2];
- }
- bool operator<(Triangle const& other) const
- {
- for (int i = 0; i < 3; ++i)
- {
- if (v[i] < other.v[i])
- {
- return true;
- }
- if (v[i] > other.v[i])
- {
- return false;
- }
- }
- return false;
- }
- std::array<int, 3> v;
- };
- // Extract level surfaces and return rational vertices.
- virtual void Extract(T level, std::vector<Vertex>& vertices,
- std::vector<Triangle>& triangles) = 0;
- void Extract(T level, bool removeDuplicateVertices,
- std::vector<std::array<Real, 3>>& vertices, std::vector<Triangle>& triangles)
- {
- std::vector<Vertex> rationalVertices;
- Extract(level, rationalVertices, triangles);
- if (removeDuplicateVertices)
- {
- MakeUnique(rationalVertices, triangles);
- }
- Convert(rationalVertices, vertices);
- }
- // The extraction has duplicate vertices on edges shared by voxels.
- // This function will eliminate the duplicates.
- void MakeUnique(std::vector<Vertex>& vertices, std::vector<Triangle>& triangles)
- {
- size_t numVertices = vertices.size();
- size_t numTriangles = triangles.size();
- if (numVertices == 0 || numTriangles == 0)
- {
- return;
- }
- // Compute the map of unique vertices and assign to them new and
- // unique indices.
- std::map<Vertex, int> vmap;
- int nextVertex = 0;
- for (size_t v = 0; v < numVertices; ++v)
- {
- // Keep only unique vertices.
- auto result = vmap.insert(std::make_pair(vertices[v], nextVertex));
- if (result.second)
- {
- ++nextVertex;
- }
- }
- // Compute the map of unique triangles and assign to them new and
- // unique indices.
- std::map<Triangle, int> tmap;
- int nextTriangle = 0;
- for (size_t t = 0; t < numTriangles; ++t)
- {
- Triangle& triangle = triangles[t];
- for (int i = 0; i < 3; ++i)
- {
- auto iter = vmap.find(vertices[triangle.v[i]]);
- LogAssert(iter != vmap.end(), "Expecting the vertex to be in the vmap.");
- triangle.v[i] = iter->second;
- }
- // Keep only unique triangles.
- auto result = tmap.insert(std::make_pair(triangle, nextTriangle));
- if (result.second)
- {
- ++nextTriangle;
- }
- }
- // Pack the vertices into an array.
- vertices.resize(vmap.size());
- for (auto const& element : vmap)
- {
- vertices[element.second] = element.first;
- }
- // Pack the triangles into an array.
- triangles.resize(tmap.size());
- for (auto const& element : tmap)
- {
- triangles[element.second] = element.first;
- }
- }
- // Convert from Vertex to std::array<Real, 3> rationals.
- void Convert(std::vector<Vertex> const& input, std::vector<std::array<Real, 3>>& output)
- {
- output.resize(input.size());
- for (size_t i = 0; i < input.size(); ++i)
- {
- Real rxNumer = static_cast<Real>(input[i].xNumer);
- Real rxDenom = static_cast<Real>(input[i].xDenom);
- Real ryNumer = static_cast<Real>(input[i].yNumer);
- Real ryDenom = static_cast<Real>(input[i].yDenom);
- Real rzNumer = static_cast<Real>(input[i].zNumer);
- Real rzDenom = static_cast<Real>(input[i].zDenom);
- output[i][0] = rxNumer / rxDenom;
- output[i][1] = ryNumer / ryDenom;
- output[i][2] = rzNumer / rzDenom;
- }
- }
- // The extraction does not use any topological information about the
- // level surfaces. The triangles can be a mixture of clockwise-ordered
- // and counterclockwise-ordered. This function is an attempt to give
- // the triangles a consistent ordering by selecting a normal in
- // approximately the same direction as the average gradient at the
- // vertices (when sameDir is true), or in the opposite direction (when
- // sameDir is false). This might not always produce a consistent
- // order, but is fast. A consistent order can be computed by
- // choosing a winding order for each triangle so that any corner of
- // the voxel containing the triangle and that has positive sign sees
- // a counterclockwise order. Of course, you can also choose that the
- // positive sign corners of the voxel always see the voxel-contained
- // triangles in clockwise order.
- void OrientTriangles(std::vector<std::array<Real, 3>>& vertices,
- std::vector<Triangle>& triangles, bool sameDir)
- {
- for (auto& triangle : triangles)
- {
- // Get the triangle vertices.
- std::array<Real, 3> v0 = vertices[triangle.v[0]];
- std::array<Real, 3> v1 = vertices[triangle.v[1]];
- std::array<Real, 3> v2 = vertices[triangle.v[2]];
- // Construct the triangle normal based on the current
- // orientation.
- std::array<Real, 3> edge1, edge2, normal;
- for (int i = 0; i < 3; ++i)
- {
- edge1[i] = v1[i] - v0[i];
- edge2[i] = v2[i] - v0[i];
- }
- normal[0] = edge1[1] * edge2[2] - edge1[2] * edge2[1];
- normal[1] = edge1[2] * edge2[0] - edge1[0] * edge2[2];
- normal[2] = edge1[0] * edge2[1] - edge1[1] * edge2[0];
- // Get the image gradient at the vertices.
- std::array<Real, 3> grad0 = GetGradient(v0);
- std::array<Real, 3> grad1 = GetGradient(v1);
- std::array<Real, 3> grad2 = GetGradient(v2);
- // Compute the average gradient.
- std::array<Real, 3> gradAvr;
- for (int i = 0; i < 3; ++i)
- {
- gradAvr[i] = (grad0[i] + grad1[i] + grad2[i]) / (Real)3;
- }
- // Compute the dot product of normal and average gradient.
- Real dot = gradAvr[0] * normal[0] + gradAvr[1] * normal[1] + gradAvr[2] * normal[2];
- // Choose triangle orientation based on gradient direction.
- if (sameDir)
- {
- if (dot < (Real)0)
- {
- // Wrong orientation, reorder it.
- std::swap(triangle.v[1], triangle.v[2]);
- }
- }
- else
- {
- if (dot > (Real)0)
- {
- // Wrong orientation, reorder it.
- std::swap(triangle.v[1], triangle.v[2]);
- }
- }
- }
- }
- // Use this function if you want vertex normals for dynamic lighting
- // of the mesh.
- void ComputeNormals(std::vector<std::array<Real, 3>> const& vertices,
- std::vector<Triangle> const& triangles,
- std::vector<std::array<Real, 3>>& normals)
- {
- // Compute a vertex normal to be area-weighted sums of the normals
- // to the triangles that share that vertex.
- std::array<Real, 3> const zero{ (Real)0, (Real)0, (Real)0 };
- normals.resize(vertices.size());
- std::fill(normals.begin(), normals.end(), zero);
- for (auto const& triangle : triangles)
- {
- // Get the triangle vertices.
- std::array<Real, 3> v0 = vertices[triangle.v[0]];
- std::array<Real, 3> v1 = vertices[triangle.v[1]];
- std::array<Real, 3> v2 = vertices[triangle.v[2]];
- // Construct the triangle normal.
- std::array<Real, 3> edge1, edge2, normal;
- for (int i = 0; i < 3; ++i)
- {
- edge1[i] = v1[i] - v0[i];
- edge2[i] = v2[i] - v0[i];
- }
- normal[0] = edge1[1] * edge2[2] - edge1[2] * edge2[1];
- normal[1] = edge1[2] * edge2[0] - edge1[0] * edge2[2];
- normal[2] = edge1[0] * edge2[1] - edge1[1] * edge2[0];
- // Maintain the sum of normals at each vertex.
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 3; ++j)
- {
- normals[triangle.v[i]][j] += normal[j];
- }
- }
- }
- // The normal vector storage was used to accumulate the sum of
- // triangle normals. Now these vectors must be rescaled to be
- // unit length.
- for (auto& normal : normals)
- {
- Real sqrLength = normal[0] * normal[0] + normal[1] * normal[1] + normal[2] * normal[2];
- Real length = std::sqrt(sqrLength);
- if (length > (Real)0)
- {
- for (int i = 0; i < 3; ++i)
- {
- normal[i] /= length;
- }
- }
- else
- {
- for (int i = 0; i < 3; ++i)
- {
- normal[i] = (Real)0;
- }
- }
- }
- }
- protected:
- // The input is a 3D image with lexicographically ordered voxels
- // (x,y,z) stored in a linear array. Voxel (x,y,z) is stored in the
- // array at location index = x + xBound * (y + yBound * z). The
- // inputs xBound, yBound and zBound must each be 2 or larger so that
- // there is at least one image cube to process. The inputVoxels must
- // be nonnull and point to contiguous storage that contains at least
- // xBound * yBound * zBound elements.
- SurfaceExtractor(int xBound, int yBound, int zBound, T const* inputVoxels)
- :
- mXBound(xBound),
- mYBound(yBound),
- mZBound(zBound),
- mXYBound(xBound * yBound),
- mInputVoxels(inputVoxels)
- {
- static_assert(std::is_integral<T>::value && sizeof(T) <= 4,
- "Type T must be int{8,16,32}_t or uint{8,16,32}_t.");
- LogAssert(xBound > 1 && yBound > 1 && zBound > 1 && mInputVoxels != nullptr,
- "Invalid input.");
- mVoxels.resize(static_cast<size_t>(mXBound * mYBound * mZBound));
- }
- virtual std::array<Real, 3> GetGradient(std::array<Real, 3> const& pos) = 0;
- int mXBound, mYBound, mZBound, mXYBound;
- T const* mInputVoxels;
- std::vector<int64_t> mVoxels;
- };
- }
|