123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.10.17
- #pragma once
- #include <Mathematics/Vector3.h>
- // Queries about the relation of a point to various geometric objects. The
- // choices for N when using UIntegerFP32<N> for either BSNumber of BSRational
- // are determined in GeometricTools/GTEngine/Tools/PrecisionCalculator. These
- // N-values are worst case scenarios. Your specific input data might require
- // much smaller N, in which case you can modify PrecisionCalculator to use the
- // BSPrecision(int32_t,int32_t,int32_t,bool) constructors.
- namespace WwiseGTE
- {
- template <typename Real>
- class PrimalQuery3
- {
- public:
- // The caller is responsible for ensuring that the array is not empty
- // before calling queries and that the indices passed to the queries
- // are valid. The class does no range checking.
- PrimalQuery3()
- :
- mNumVertices(0),
- mVertices(nullptr)
- {
- }
- PrimalQuery3(int numVertices, Vector3<Real> const* vertices)
- :
- mNumVertices(numVertices),
- mVertices(vertices)
- {
- }
- // Member access.
- inline void Set(int numVertices, Vector3<Real> const* vertices)
- {
- mNumVertices = numVertices;
- mVertices = vertices;
- }
- inline int GetNumVertices() const
- {
- return mNumVertices;
- }
- inline Vector3<Real> const* GetVertices() const
- {
- return mVertices;
- }
- // In the following, point P refers to vertices[i] or 'test' and Vi
- // refers to vertices[vi].
- // For a plane with origin V0 and normal N = Cross(V1-V0,V2-V0),
- // ToPlane returns
- // +1, P on positive side of plane (side to which N points)
- // -1, P on negative side of plane (side to which -N points)
- // 0, P on the plane
- //
- // Choice of N for UIntegerFP32<N>.
- // input type | compute type | N
- // -----------+--------------+----
- // float | BSNumber | 27
- // double | BSNumber | 197
- // float | BSRational | 79
- // double | BSRational | 591
- int ToPlane(int i, int v0, int v1, int v2) const
- {
- return ToPlane(mVertices[i], v0, v1, v2);
- }
- int ToPlane(Vector3<Real> const& test, int v0, int v1, int v2) const
- {
- Vector3<Real> const& vec0 = mVertices[v0];
- Vector3<Real> const& vec1 = mVertices[v1];
- Vector3<Real> const& vec2 = mVertices[v2];
- Real x0 = test[0] - vec0[0];
- Real y0 = test[1] - vec0[1];
- Real z0 = test[2] - vec0[2];
- Real x1 = vec1[0] - vec0[0];
- Real y1 = vec1[1] - vec0[1];
- Real z1 = vec1[2] - vec0[2];
- Real x2 = vec2[0] - vec0[0];
- Real y2 = vec2[1] - vec0[1];
- Real z2 = vec2[2] - vec0[2];
- Real y1z2 = y1 * z2;
- Real y2z1 = y2 * z1;
- Real y2z0 = y2 * z0;
- Real y0z2 = y0 * z2;
- Real y0z1 = y0 * z1;
- Real y1z0 = y1 * z0;
- Real c0 = y1z2 - y2z1;
- Real c1 = y2z0 - y0z2;
- Real c2 = y0z1 - y1z0;
- Real x0c0 = x0 * c0;
- Real x1c1 = x1 * c1;
- Real x2c2 = x2 * c2;
- Real term = x0c0 + x1c1;
- Real det = term + x2c2;
- Real const zero(0);
- return (det > zero ? +1 : (det < zero ? -1 : 0));
- }
- // For a tetrahedron with vertices ordered as described in the file
- // TetrahedronKey.h, the function returns
- // +1, P outside tetrahedron
- // -1, P inside tetrahedron
- // 0, P on tetrahedron
- //
- // Choice of N for UIntegerFP32<N>.
- // input type | compute type | N
- // -----------+--------------+----
- // float | BSNumber | 27
- // double | BSNumber | 197
- // float | BSRational | 79
- // double | BSRational | 591
- // The query involves four calls of ToPlane, so the numbers match
- // those of ToPlane.
- int ToTetrahedron(int i, int v0, int v1, int v2, int v3) const
- {
- return ToTetrahedron(mVertices[i], v0, v1, v2, v3);
- }
- int ToTetrahedron(Vector3<Real> const& test, int v0, int v1, int v2, int v3) const
- {
- int sign0 = ToPlane(test, v1, v2, v3);
- if (sign0 > 0)
- {
- return +1;
- }
- int sign1 = ToPlane(test, v0, v2, v3);
- if (sign1 < 0)
- {
- return +1;
- }
- int sign2 = ToPlane(test, v0, v1, v3);
- if (sign2 > 0)
- {
- return +1;
- }
- int sign3 = ToPlane(test, v0, v1, v2);
- if (sign3 < 0)
- {
- return +1;
- }
- return ((sign0 && sign1 && sign2 && sign3) ? -1 : 0);
- }
- // For a tetrahedron with vertices ordered as described in the file
- // TetrahedronKey.h, the function returns
- // +1, P outside circumsphere of tetrahedron
- // -1, P inside circumsphere of tetrahedron
- // 0, P on circumsphere of tetrahedron
- //
- // Choice of N for UIntegerFP32<N>.
- // input type | compute type | N
- // -----------+--------------+-----
- // float | BSNumber | 44
- // double | BSNumber | 329
- // float | BSNumber | 262
- // double | BSRational | 1969
- int ToCircumsphere(int i, int v0, int v1, int v2, int v3) const
- {
- return ToCircumsphere(mVertices[i], v0, v1, v2, v3);
- }
- int ToCircumsphere(Vector3<Real> const& test, int v0, int v1, int v2, int v3) const
- {
- Vector3<Real> const& vec0 = mVertices[v0];
- Vector3<Real> const& vec1 = mVertices[v1];
- Vector3<Real> const& vec2 = mVertices[v2];
- Vector3<Real> const& vec3 = mVertices[v3];
- Real x0 = vec0[0] - test[0];
- Real y0 = vec0[1] - test[1];
- Real z0 = vec0[2] - test[2];
- Real s00 = vec0[0] + test[0];
- Real s01 = vec0[1] + test[1];
- Real s02 = vec0[2] + test[2];
- Real t00 = s00 * x0;
- Real t01 = s01 * y0;
- Real t02 = s02 * z0;
- Real t00pt01 = t00 + t01;
- Real w0 = t00pt01 + t02;
- Real x1 = vec1[0] - test[0];
- Real y1 = vec1[1] - test[1];
- Real z1 = vec1[2] - test[2];
- Real s10 = vec1[0] + test[0];
- Real s11 = vec1[1] + test[1];
- Real s12 = vec1[2] + test[2];
- Real t10 = s10 * x1;
- Real t11 = s11 * y1;
- Real t12 = s12 * z1;
- Real t10pt11 = t10 + t11;
- Real w1 = t10pt11 + t12;
- Real x2 = vec2[0] - test[0];
- Real y2 = vec2[1] - test[1];
- Real z2 = vec2[2] - test[2];
- Real s20 = vec2[0] + test[0];
- Real s21 = vec2[1] + test[1];
- Real s22 = vec2[2] + test[2];
- Real t20 = s20 * x2;
- Real t21 = s21 * y2;
- Real t22 = s22 * z2;
- Real t20pt21 = t20 + t21;
- Real w2 = t20pt21 + t22;
- Real x3 = vec3[0] - test[0];
- Real y3 = vec3[1] - test[1];
- Real z3 = vec3[2] - test[2];
- Real s30 = vec3[0] + test[0];
- Real s31 = vec3[1] + test[1];
- Real s32 = vec3[2] + test[2];
- Real t30 = s30 * x3;
- Real t31 = s31 * y3;
- Real t32 = s32 * z3;
- Real t30pt31 = t30 + t31;
- Real w3 = t30pt31 + t32;
- Real x0y1 = x0 * y1;
- Real x0y2 = x0 * y2;
- Real x0y3 = x0 * y3;
- Real x1y0 = x1 * y0;
- Real x1y2 = x1 * y2;
- Real x1y3 = x1 * y3;
- Real x2y0 = x2 * y0;
- Real x2y1 = x2 * y1;
- Real x2y3 = x2 * y3;
- Real x3y0 = x3 * y0;
- Real x3y1 = x3 * y1;
- Real x3y2 = x3 * y2;
- Real a0 = x0y1 - x1y0;
- Real a1 = x0y2 - x2y0;
- Real a2 = x0y3 - x3y0;
- Real a3 = x1y2 - x2y1;
- Real a4 = x1y3 - x3y1;
- Real a5 = x2y3 - x3y2;
- Real z0w1 = z0 * w1;
- Real z0w2 = z0 * w2;
- Real z0w3 = z0 * w3;
- Real z1w0 = z1 * w0;
- Real z1w2 = z1 * w2;
- Real z1w3 = z1 * w3;
- Real z2w0 = z2 * w0;
- Real z2w1 = z2 * w1;
- Real z2w3 = z2 * w3;
- Real z3w0 = z3 * w0;
- Real z3w1 = z3 * w1;
- Real z3w2 = z3 * w2;
- Real b0 = z0w1 - z1w0;
- Real b1 = z0w2 - z2w0;
- Real b2 = z0w3 - z3w0;
- Real b3 = z1w2 - z2w1;
- Real b4 = z1w3 - z3w1;
- Real b5 = z2w3 - z3w2;
- Real a0b5 = a0 * b5;
- Real a1b4 = a1 * b4;
- Real a2b3 = a2 * b3;
- Real a3b2 = a3 * b2;
- Real a4b1 = a4 * b1;
- Real a5b0 = a5 * b0;
- Real term0 = a0b5 - a1b4;
- Real term1 = term0 + a2b3;
- Real term2 = term1 + a3b2;
- Real term3 = term2 - a4b1;
- Real det = term3 + a5b0;
- Real const zero(0);
- return (det > zero ? 1 : (det < zero ? -1 : 0));
- }
- private:
- int mNumVertices;
- Vector3<Real> const* mVertices;
- };
- }
|