123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.12.28
- #pragma once
- #include <Mathematics/BasisFunction.h>
- #include <Mathematics/Vector.h>
- namespace WwiseGTE
- {
- template <int N, typename Real>
- class NURBSVolume
- {
- public:
- // Construction. If the input controls is non-null, a copy is made of
- // the controls. To defer setting the control points or weights, pass
- // null pointers and later access the control points or weights via
- // GetControls(), GetWeights(), SetControl(), or SetWeight() member
- // functions. The 'controls' and 'weights' must be stored in
- // lexicographical order,
- // attribute[i0 + numControls0 * (i1 + numControls1 * i2)]
- // As a 3D array, this corresponds to attribute3D[i2][i1][i0].
- NURBSVolume(BasisFunctionInput<Real> const& input0,
- BasisFunctionInput<Real> const& input1,
- BasisFunctionInput<Real> const& input2,
- Vector<N, Real> const* controls, Real const* weights)
- :
- mConstructed(false)
- {
- BasisFunctionInput<Real> const* input[3] = { &input0, &input1, &input2 };
- for (int i = 0; i < 3; ++i)
- {
- mNumControls[i] = input[i]->numControls;
- mBasisFunction[i].Create(*input[i]);
- }
- // The replication of control points for periodic splines is
- // avoided by wrapping the i-loop index in Evaluate.
- int numControls = mNumControls[0] * mNumControls[1] * mNumControls[2];
- mControls.resize(numControls);
- mWeights.resize(numControls);
- if (controls)
- {
- std::copy(controls, controls + numControls, mControls.begin());
- }
- else
- {
- Vector<N, Real> zero{ (Real)0 };
- std::fill(mControls.begin(), mControls.end(), zero);
- }
- if (weights)
- {
- std::copy(weights, weights + numControls, mWeights.begin());
- }
- else
- {
- std::fill(mWeights.begin(), mWeights.end(), (Real)0);
- }
- mConstructed = true;
- }
- // To validate construction, create an object as shown:
- // NURBSVolume<N, Real> volume(parameters);
- // if (!volume) { <constructor failed, handle accordingly>; }
- inline operator bool() const
- {
- return mConstructed;
- }
- // Member access. The index 'dim' must be in {0,1,2}.
- inline BasisFunction<Real> const& GetBasisFunction(int dim) const
- {
- return mBasisFunction[dim];
- }
- inline Real GetMinDomain(int dim) const
- {
- return mBasisFunction[dim].GetMinDomain();
- }
- inline Real GetMaxDomain(int dim) const
- {
- return mBasisFunction[dim].GetMaxDomain();
- }
- inline int GetNumControls(int dim) const
- {
- return mNumControls[dim];
- }
- inline Vector<N, Real> const* GetControls() const
- {
- return mControls.data();
- }
- inline Vector<N, Real>* GetControls()
- {
- return mControls.data();
- }
- inline Real const* GetWeights() const
- {
- return mWeights.data();
- }
- inline Real* GetWeights()
- {
- return mWeights.data();
- }
- // Evaluation of the volume. The function supports derivative
- // calculation through order 2; that is, order <= 2 is required. If
- // you want only the position, pass in order of 0. If you want the
- // position and first-order derivatives, pass in order of 1, and so
- // on. The output array 'jet' muist have enough storage to support
- // the maximum order. The values are ordered as: position X;
- // first-order derivatives dX/du, dX/dv, dX/dw; second-order
- // derivatives d2X/du2, d2X/dv2, d2X/dw2, d2X/dudv, d2X/dudw,
- // d2X/dvdw.
- enum { SUP_ORDER = 10 };
- void Evaluate(Real u, Real v, Real w, unsigned int order, Vector<N, Real>* jet) const
- {
- if (!mConstructed || order >= SUP_ORDER)
- {
- // Errors were already generated during construction.
- for (unsigned int i = 0; i < SUP_ORDER; ++i)
- {
- jet[i].MakeZero();
- }
- return;
- }
- int iumin, iumax, ivmin, ivmax, iwmin, iwmax;
- mBasisFunction[0].Evaluate(u, order, iumin, iumax);
- mBasisFunction[1].Evaluate(v, order, ivmin, ivmax);
- mBasisFunction[2].Evaluate(w, order, iwmin, iwmax);
- // Compute position.
- Vector<N, Real> X;
- Real h;
- Compute(0, 0, 0, iumin, iumax, ivmin, ivmax, iwmin, iwmax, X, h);
- Real invH = (Real)1 / h;
- jet[0] = invH * X;
- if (order >= 1)
- {
- // Compute first-order derivatives.
- Vector<N, Real> XDerU;
- Real hDerU;
- Compute(1, 0, 0, iumin, iumax, ivmin, ivmax, iwmin, iwmax, XDerU, hDerU);
- jet[1] = invH * (XDerU - hDerU * jet[0]);
- Vector<N, Real> XDerV;
- Real hDerV;
- Compute(0, 1, 0, iumin, iumax, ivmin, ivmax, iwmin, iwmax, XDerV, hDerV);
- jet[2] = invH * (XDerV - hDerV * jet[0]);
- Vector<N, Real> XDerW;
- Real hDerW;
- Compute(0, 0, 1, iumin, iumax, ivmin, ivmax, iwmin, iwmax, XDerW, hDerW);
- jet[3] = invH * (XDerW - hDerW * jet[0]);
- if (order >= 2)
- {
- // Compute second-order derivatives.
- Vector<N, Real> XDerUU;
- Real hDerUU;
- Compute(2, 0, 0, iumin, iumax, ivmin, ivmax, iwmin, iwmax, XDerUU, hDerUU);
- jet[4] = invH * (XDerUU - (Real)2 * hDerU * jet[1] - hDerUU * jet[0]);
- Vector<N, Real> XDerVV;
- Real hDerVV;
- Compute(0, 2, 0, iumin, iumax, ivmin, ivmax, iwmin, iwmax, XDerVV, hDerVV);
- jet[5] = invH * (XDerVV - (Real)2 * hDerV * jet[2] - hDerVV * jet[0]);
- Vector<N, Real> XDerWW;
- Real hDerWW;
- Compute(0, 0, 2, iumin, iumax, ivmin, ivmax, iwmin, iwmax, XDerWW, hDerWW);
- jet[6] = invH * (XDerWW - (Real)2 * hDerW * jet[3] - hDerWW * jet[0]);
- Vector<N, Real> XDerUV;
- Real hDerUV;
- Compute(1, 1, 0, iumin, iumax, ivmin, ivmax, iwmin, iwmax, XDerUV, hDerUV);
- jet[7] = invH * (XDerUV - hDerU * jet[2] - hDerV * jet[1] - hDerUV * jet[0]);
- Vector<N, Real> XDerUW;
- Real hDerUW;
- Compute(1, 0, 1, iumin, iumax, ivmin, ivmax, iwmin, iwmax, XDerUW, hDerUW);
- jet[8] = invH * (XDerUW - hDerU * jet[3] - hDerW * jet[1] - hDerUW * jet[0]);
- Vector<N, Real> XDerVW;
- Real hDerVW;
- Compute(0, 1, 1, iumin, iumax, ivmin, ivmax, iwmin, iwmax, XDerVW, hDerVW);
- jet[9] = invH * (XDerVW - hDerV * jet[3] - hDerW * jet[2] - hDerVW * jet[0]);
- }
- }
- }
- private:
- // Support for Evaluate(...).
- void Compute(unsigned int uOrder, unsigned int vOrder,
- unsigned int wOrder, int iumin, int iumax, int ivmin, int ivmax,
- int iwmin, int iwmax, Vector<N, Real>& X, Real& h) const
- {
- // The j*-indices introduce a tiny amount of overhead in order to
- // handle both aperiodic and periodic splines. For aperiodic
- // splines, j* = i* always.
- int const numControls0 = mNumControls[0];
- int const numControls1 = mNumControls[1];
- int const numControls2 = mNumControls[2];
- X.MakeZero();
- h = (Real)0;
- for (int iw = iwmin; iw <= iwmax; ++iw)
- {
- Real tmpw = mBasisFunction[2].GetValue(wOrder, iw);
- int jw = (iw >= numControls2 ? iw - numControls2 : iw);
- for (int iv = ivmin; iv <= ivmax; ++iv)
- {
- Real tmpv = mBasisFunction[1].GetValue(vOrder, iv);
- Real tmpvw = tmpv * tmpw;
- int jv = (iv >= numControls1 ? iv - numControls1 : iv);
- for (int iu = iumin; iu <= iumax; ++iu)
- {
- Real tmpu = mBasisFunction[0].GetValue(uOrder, iu);
- int ju = (iu >= numControls0 ? iu - numControls0 : iu);
- int index = ju + numControls0 * (jv + numControls1 * jw);
- Real tmp = (tmpu * tmpvw) * mWeights[index];
- X += tmp * mControls[index];
- h += tmp;
- }
- }
- }
- }
- std::array<BasisFunction<Real>, 3> mBasisFunction;
- std::array<int, 3> mNumControls;
- std::vector<Vector<N, Real>> mControls;
- std::vector<Real> mWeights;
- bool mConstructed;
- };
- }
|