123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Matrix2x2.h>
- #include <Mathematics/Matrix3x3.h>
- // The MeshCurvature class estimates principal curvatures and principal
- // directions at the vertices of a manifold triangle mesh. The algorithm
- // is described in
- // https://www.geometrictools.com/Documentation/MeshDifferentialGeometry.pdf
- namespace WwiseGTE
- {
- template <typename Real>
- class MeshCurvature
- {
- public:
- MeshCurvature() = default;
- // The input to operator() is a triangle mesh with the specified
- // vertex buffer and index buffer. The number of elements of
- // 'indices' must be a multiple of 3, each triple of indices
- // (3*t, 3*t+1, 3*t+2) representing the triangle with vertices
- // (vertices[3*t], vertices[3*t+1], vertices[3*t+2]). The
- // singularity threshold is a small nonnegative number. It is
- // used to characterize whether the DWTrn matrix is singular. In
- // theory, set the threshold to zero. In practice you might have
- // to set this to a small positive number.
- void operator()(
- size_t numVertices, Vector3<Real> const* vertices,
- size_t numTriangles, unsigned int const* indices,
- Real singularityThreshold)
- {
- mNormals.resize(numVertices);
- mMinCurvatures.resize(numVertices);
- mMaxCurvatures.resize(numVertices);
- mMinDirections.resize(numVertices);
- mMaxDirections.resize(numVertices);
- // Compute the normal vectors for the vertices as an
- // area-weighted sum of the triangles sharing a vertex.
- Vector3<Real> vzero{ (Real)0, (Real)0, (Real)0 };
- std::fill(mNormals.begin(), mNormals.end(), vzero);
- unsigned int const* currentIndex = indices;
- for (size_t i = 0; i < numTriangles; ++i)
- {
- // Get vertex indices.
- unsigned int v0 = *currentIndex++;
- unsigned int v1 = *currentIndex++;
- unsigned int v2 = *currentIndex++;
- // Compute the normal (length provides a weighted sum).
- Vector3<Real> edge1 = vertices[v1] - vertices[v0];
- Vector3<Real> edge2 = vertices[v2] - vertices[v0];
- Vector3<Real> normal = Cross(edge1, edge2);
- mNormals[v0] += normal;
- mNormals[v1] += normal;
- mNormals[v2] += normal;
- }
- for (size_t i = 0; i < numVertices; ++i)
- {
- Normalize(mNormals[i]);
- }
- // Compute the matrix of normal derivatives.
- Matrix3x3<Real> mzero;
- std::vector<Matrix3x3<Real>> DNormal(numVertices, mzero);
- std::vector<Matrix3x3<Real>> WWTrn(numVertices, mzero);
- std::vector<Matrix3x3<Real>> DWTrn(numVertices, mzero);
- std::vector<bool> DWTrnZero(numVertices, false);
- currentIndex = indices;
- for (size_t i = 0; i < numTriangles; ++i)
- {
- // Get vertex indices.
- unsigned int v[3];
- v[0] = *currentIndex++;
- v[1] = *currentIndex++;
- v[2] = *currentIndex++;
- for (size_t j = 0; j < 3; j++)
- {
- unsigned int v0 = v[j];
- unsigned int v1 = v[(j + 1) % 3];
- unsigned int v2 = v[(j + 2) % 3];
- // Compute the edge direction from vertex v0 to vertex v1,
- // project it to the tangent plane of vertex v0 and
- // compute the difference of adjacent normals.
- Vector3<Real> E = vertices[v1] - vertices[v0];
- Vector3<Real> W = E - Dot(E, mNormals[v0]) * mNormals[v0];
- Vector3<Real> D = mNormals[v1] - mNormals[v0];
- for (int row = 0; row < 3; ++row)
- {
- for (int col = 0; col < 3; ++col)
- {
- WWTrn[v0](row, col) += W[row] * W[col];
- DWTrn[v0](row, col) += D[row] * W[col];
- }
- }
- // Compute the edge direction from vertex v0 to vertex v2,
- // project it to the tangent plane of vertex v0 and
- // compute the difference of adjacent normals.
- E = vertices[v2] - vertices[v0];
- W = E - Dot(E, mNormals[v0]) * mNormals[v0];
- D = mNormals[v2] - mNormals[v0];
- for (int row = 0; row < 3; ++row)
- {
- for (int col = 0; col < 3; ++col)
- {
- WWTrn[v0](row, col) += W[row] * W[col];
- DWTrn[v0](row, col) += D[row] * W[col];
- }
- }
- }
- }
- // Add in N*N^T to W*W^T for numerical stability. In theory 0*0^T
- // is added to D*W^T, but of course no update is needed in the
- // implementation. Compute the matrix of normal derivatives.
- for (size_t i = 0; i < numVertices; ++i)
- {
- for (int row = 0; row < 3; ++row)
- {
- for (int col = 0; col < 3; ++col)
- {
- WWTrn[i](row, col) = (Real)0.5 * WWTrn[i](row, col) +
- mNormals[i][row] * mNormals[i][col];
- DWTrn[i](row, col) *= (Real)0.5;
- }
- }
- // Compute the max-abs entry of D*W^T. If this entry is
- // (nearly) zero, flag the DNormal matrix as singular.
- Real maxAbs = (Real)0;
- for (int row = 0; row < 3; ++row)
- {
- for (int col = 0; col < 3; ++col)
- {
- Real absEntry = std::fabs(DWTrn[i](row, col));
- if (absEntry > maxAbs)
- {
- maxAbs = absEntry;
- }
- }
- }
- if (maxAbs < singularityThreshold)
- {
- DWTrnZero[i] = true;
- }
- DNormal[i] = DWTrn[i] * Inverse(WWTrn[i]);
- }
- // If N is a unit-length normal at a vertex, let U and V be
- // unit-length tangents so that {U, V, N} is an orthonormal set.
- // Define the matrix J = [U | V], a 3-by-2 matrix whose columns
- // are U and V. Define J^T to be the transpose of J, a 2-by-3
- // matrix. Let dN/dX denote the matrix of first-order derivatives
- // of the normal vector field. The shape matrix is
- // S = (J^T * J)^{-1} * J^T * dN/dX * J = J^T * dN/dX * J
- // where the superscript of -1 denotes the inverse; the formula
- // allows for J to be created from non-perpendicular vectors. The
- // matrix S is 2-by-2. The principal curvatures are the
- // eigenvalues of S. If k is a principal curvature and W is the
- // 2-by-1 eigenvector corresponding to it, then S*W = k*W (by
- // definition). The corresponding 3-by-1 tangent vector at the
- // vertex is a principal direction for k and is J*W.
- for (size_t i = 0; i < numVertices; ++i)
- {
- // Compute U and V given N.
- Vector3<Real> basis[3];
- basis[0] = mNormals[i];
- ComputeOrthogonalComplement(1, basis);
- Vector3<Real> const& U = basis[1];
- Vector3<Real> const& V = basis[2];
- if (DWTrnZero[i])
- {
- // At a locally planar point.
- mMinCurvatures[i] = (Real)0;
- mMaxCurvatures[i] = (Real)0;
- mMinDirections[i] = U;
- mMaxDirections[i] = V;
- continue;
- }
- // Compute S = J^T * dN/dX * J. In theory S is symmetric, but
- // because dN/dX is estimated, we must ensure that the
- // computed S is symmetric.
- Real s00 = Dot(U, DNormal[i] * U);
- Real s01 = Dot(U, DNormal[i] * V);
- Real s10 = Dot(V, DNormal[i] * U);
- Real s11 = Dot(V, DNormal[i] * V);
- Real avr = (Real)0.5 * (s01 + s10);
- Matrix2x2<Real> S{ s00, avr, avr, s11 };
- // Compute the eigenvalues of S (min and max curvatures).
- Real trace = S(0, 0) + S(1, 1);
- Real det = S(0, 0) * S(1, 1) - S(0, 1) * S(1, 0);
- Real discr = trace * trace - (Real)4.0 * det;
- Real rootDiscr = std::sqrt(std::max(discr, (Real)0));
- mMinCurvatures[i] = (Real)0.5* (trace - rootDiscr);
- mMaxCurvatures[i] = (Real)0.5* (trace + rootDiscr);
- // Compute the eigenvectors of S.
- Vector2<Real> W0{ S(0, 1), mMinCurvatures[i] - S(0, 0) };
- Vector2<Real> W1{ mMinCurvatures[i] - S(1, 1), S(1, 0) };
- if (Dot(W0, W0) >= Dot(W1, W1))
- {
- Normalize(W0);
- mMinDirections[i] = W0[0] * U + W0[1] * V;
- }
- else
- {
- Normalize(W1);
- mMinDirections[i] = W1[0] * U + W1[1] * V;
- }
- W0 = Vector2<Real>{ S(0, 1), mMaxCurvatures[i] - S(0, 0) };
- W1 = Vector2<Real>{ mMaxCurvatures[i] - S(1, 1), S(1, 0) };
- if (Dot(W0, W0) >= Dot(W1, W1))
- {
- Normalize(W0);
- mMaxDirections[i] = W0[0] * U + W0[1] * V;
- }
- else
- {
- Normalize(W1);
- mMaxDirections[i] = W1[0] * U + W1[1] * V;
- }
- }
- }
- void operator()(
- std::vector<Vector3<Real>> const& vertices,
- std::vector<unsigned int> const& indices,
- Real singularityThreshold)
- {
- operator()(vertices.size(), vertices.data(), indices.size() / 3,
- indices.data(), singularityThreshold);
- }
- inline std::vector<Vector3<Real>> const& GetNormals() const
- {
- return mNormals;
- }
- inline std::vector<Real> const& GetMinCurvatures() const
- {
- return mMinCurvatures;
- }
- inline std::vector<Real> const& GetMaxCurvatures() const
- {
- return mMaxCurvatures;
- }
- inline std::vector<Vector3<Real>> const& GetMinDirections() const
- {
- return mMinDirections;
- }
- inline std::vector<Vector3<Real>> const& GetMaxDirections() const
- {
- return mMaxDirections;
- }
- private:
- std::vector<Vector3<Real>> mNormals;
- std::vector<Real> mMinCurvatures;
- std::vector<Real> mMaxCurvatures;
- std::vector<Vector3<Real>> mMinDirections;
- std::vector<Vector3<Real>> mMaxDirections;
- };
- }
|