1234567891011121314151617181920212223242526272829303132333435363738394041424344 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.12.23
- #pragma once
- #include <Mathematics/Log2Estimate.h>
- // Minimax polynomial approximations to log2(x). The polynomial p(x) of
- // degree D minimizes the quantity maximum{|log2(x) - p(x)| : x in [1,2]}
- // over all polynomials of degree D. The natural logarithm is computed
- // using log(x) = log2(x)/log2(e) = log2(x)*log(2).
- namespace WwiseGTE
- {
- template <typename Real>
- class LogEstimate
- {
- public:
- // The input constraint is x in [1,2]. For example,
- // float x; // in [1,2]
- // float result = LogEstimate<float>::Degree<3>(x);
- template <int D>
- inline static Real Degree(Real x)
- {
- return Log2Estimate<Real>::Degree<D>(x) * (Real)GTE_C_LN_2;
- }
- // The input constraint is x > 0. Range reduction is used to generate
- // a value y in (0,1], call Degree(y), and add the exponent for the
- // power of two in the binary scientific representation of x. For
- // example,
- // float x; // x > 0
- // float result = LogEstimate<float>::DegreeRR<3>(x);
- template <int D>
- inline static Real DegreeRR(Real x)
- {
- return Log2Estimate<Real>::DegreeRR<D>(x) * (Real)GTE_C_LN_2;
- }
- };
- }
|