123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/FIQuery.h>
- #include <Mathematics/TIQuery.h>
- #include <Mathematics/Hypersphere.h>
- #include <Mathematics/Circle3.h>
- // The queries consider the spheres to be solids.
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Sphere3<Real>, Sphere3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- Result operator()(Sphere3<Real> const& sphere0, Sphere3<Real> const& sphere1)
- {
- Result result;
- Vector3<Real> diff = sphere1.center - sphere0.center;
- Real rSum = sphere0.radius + sphere1.radius;
- result.intersect = (Dot(diff, diff) <= rSum * rSum);
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Sphere3<Real>, Sphere3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- // The type of intersection.
- // 0: spheres are disjoint and separated
- // 1: spheres touch at point, each sphere outside the other
- // 2: spheres intersect in a circle
- // 3: sphere0 strictly contained in sphere1
- // 4: sphere0 contained in sphere1, share common point
- // 5: sphere1 strictly contained in sphere0
- // 6: sphere1 contained in sphere0, share common point
- int type;
- Vector3<Real> point; // types 1, 4, 6
- Circle3<Real> circle; // type 2
- };
- Result operator()(Sphere3<Real> const& sphere0, Sphere3<Real> const& sphere1)
- {
- Result result;
- // The plane of intersection must have C1-C0 as its normal
- // direction.
- Vector3<Real> C1mC0 = sphere1.center - sphere0.center;
- Real sqrLen = Dot(C1mC0, C1mC0);
- Real r0 = sphere0.radius, r1 = sphere1.radius;
- Real rSum = r0 + r1;
- Real rSumSqr = rSum * rSum;
- if (sqrLen > rSumSqr)
- {
- // The spheres are disjoint/separated.
- result.intersect = false;
- result.type = 0;
- return result;
- }
- if (sqrLen == rSumSqr)
- {
- // The spheres are just touching with each sphere outside the
- // other.
- Normalize(C1mC0);
- result.intersect = true;
- result.type = 1;
- result.point = sphere0.center + r0 * C1mC0;
- return result;
- }
- Real rDif = r0 - r1;
- Real rDifSqr = rDif * rDif;
- if (sqrLen < rDifSqr)
- {
- // One sphere is strictly contained in the other. Compute a
- // point in the intersection set.
- result.intersect = true;
- result.type = (rDif <= (Real)0 ? 3 : 5);
- result.point = ((Real)0.5) * (sphere0.center + sphere1.center);
- return result;
- }
- if (sqrLen == rDifSqr)
- {
- // One sphere is contained in the other sphere but with a
- // single point of contact.
- Normalize(C1mC0);
- result.intersect = true;
- if (rDif <= (Real)0)
- {
- result.type = 4;
- result.point = sphere1.center + r1 * C1mC0;
- }
- else
- {
- result.type = 6;
- result.point = sphere0.center + r0 * C1mC0;
- }
- return result;
- }
- // Compute t for which the circle of intersection has center
- // K = C0 + t*(C1 - C0).
- Real t = ((Real)0.5) * ((Real)1 + rDif * rSum / sqrLen);
- // Compute the center and radius of the circle of intersection.
- result.circle.center = sphere0.center + t * C1mC0;
- result.circle.radius = std::sqrt(std::max(r0 * r0 - t * t * sqrLen, (Real)0));
- // Compute the normal for the plane of the circle.
- Normalize(C1mC0);
- result.circle.normal = C1mC0;
- // The intersection is a circle.
- result.intersect = true;
- result.type = 2;
- return result;
- }
- };
- }
|