123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/IntrIntervals.h>
- #include <Mathematics/IntrLine3Sphere3.h>
- #include <Mathematics/Segment.h>
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Segment3<Real>, Sphere3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- Result operator()(Segment3<Real> const& segment, Sphere3<Real> const& sphere)
- {
- // The sphere is (X-C)^T*(X-C)-1 = 0 and the line is X = P+t*D.
- // Substitute the line equation into the sphere equation to
- // obtain a quadratic equation Q(t) = t^2 + 2*a1*t + a0 = 0, where
- // a1 = D^T*(P-C) and a0 = (P-C)^T*(P-C)-1.
- Result result;
- Vector3<Real> segOrigin, segDirection;
- Real segExtent;
- segment.GetCenteredForm(segOrigin, segDirection, segExtent);
- Vector3<Real> diff = segOrigin - sphere.center;
- Real a0 = Dot(diff, diff) - sphere.radius * sphere.radius;
- Real a1 = Dot(segDirection, diff);
- Real discr = a1 * a1 - a0;
- if (discr < (Real)0)
- {
- result.intersect = false;
- return result;
- }
- Real tmp0 = segExtent * segExtent + a0;
- Real tmp1 = ((Real)2) * a1 * segExtent;
- Real qm = tmp0 - tmp1;
- Real qp = tmp0 + tmp1;
- if (qm * qp <= (Real)0)
- {
- result.intersect = true;
- return result;
- }
- result.intersect = (qm > (Real)0 && std::fabs(a1) < segExtent);
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Segment3<Real>, Sphere3<Real>>
- :
- public FIQuery<Real, Line3<Real>, Sphere3<Real>>
- {
- public:
- struct Result
- :
- public FIQuery<Real, Line3<Real>, Sphere3<Real>>::Result
- {
- // No additional information to compute.
- };
- Result operator()(Segment3<Real> const& segment, Sphere3<Real> const& sphere)
- {
- Vector3<Real> segOrigin, segDirection;
- Real segExtent;
- segment.GetCenteredForm(segOrigin, segDirection, segExtent);
- Result result;
- DoQuery(segOrigin, segDirection, segExtent, sphere, result);
- for (int i = 0; i < result.numIntersections; ++i)
- {
- result.point[i] = segOrigin + result.parameter[i] * segDirection;
- }
- return result;
- }
- protected:
- void DoQuery(Vector3<Real> const& segOrigin,
- Vector3<Real> const& segDirection, Real segExtent,
- Sphere3<Real> const& sphere, Result& result)
- {
- FIQuery<Real, Line3<Real>, Sphere3<Real>>::DoQuery(segOrigin,
- segDirection, sphere, result);
- if (result.intersect)
- {
- // The line containing the segment intersects the sphere; the
- // t-interval is [t0,t1]. The segment intersects the sphere
- // as long as [t0,t1] overlaps the segment t-interval
- // [-segExtent,+segExtent].
- std::array<Real, 2> segInterval = { -segExtent, segExtent };
- FIQuery<Real, std::array<Real, 2>, std::array<Real, 2>> iiQuery;
- auto iiResult = iiQuery(result.parameter, segInterval);
- if (iiResult.intersect)
- {
- result.numIntersections = iiResult.numIntersections;
- result.parameter = iiResult.overlap;
- }
- else
- {
- result.intersect = false;
- result.numIntersections = 0;
- }
- }
- }
- };
- }
|