123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/IntrIntervals.h>
- #include <Mathematics/IntrLine3Sphere3.h>
- #include <Mathematics/Ray.h>
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Ray3<Real>, Sphere3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- Result operator()(Ray3<Real> const& ray, Sphere3<Real> const& sphere)
- {
- // The sphere is (X-C)^T*(X-C)-1 = 0 and the line is X = P+t*D.
- // Substitute the line equation into the sphere equation to
- // obtain a quadratic equation Q(t) = t^2 + 2*a1*t + a0 = 0, where
- // a1 = D^T*(P-C) and a0 = (P-C)^T*(P-C)-1.
- Result result;
- Vector3<Real> diff = ray.origin - sphere.center;
- Real a0 = Dot(diff, diff) - sphere.radius * sphere.radius;
- if (a0 <= (Real)0)
- {
- // P is inside the sphere.
- result.intersect = true;
- return result;
- }
- // else: P is outside the sphere
- Real a1 = Dot(ray.direction, diff);
- if (a1 >= (Real)0)
- {
- result.intersect = false;
- return result;
- }
- // Intersection occurs when Q(t) has real roots.
- Real discr = a1 * a1 - a0;
- result.intersect = (discr >= (Real)0);
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Ray3<Real>, Sphere3<Real>>
- :
- public FIQuery<Real, Line3<Real>, Sphere3<Real>>
- {
- public:
- struct Result
- :
- public FIQuery<Real, Line3<Real>, Sphere3<Real>>::Result
- {
- // No additional information to compute.
- };
- Result operator()(Ray3<Real> const& ray, Sphere3<Real> const& sphere)
- {
- Result result;
- DoQuery(ray.origin, ray.direction, sphere, result);
- for (int i = 0; i < result.numIntersections; ++i)
- {
- result.point[i] = ray.origin + result.parameter[i] * ray.direction;
- }
- return result;
- }
- protected:
- void DoQuery(Vector3<Real> const& rayOrigin,
- Vector3<Real> const& rayDirection, Sphere3<Real> const& sphere,
- Result& result)
- {
- FIQuery<Real, Line3<Real>, Sphere3<Real>>::DoQuery(rayOrigin,
- rayDirection, sphere, result);
- if (result.intersect)
- {
- // The line containing the ray intersects the sphere; the
- // t-interval is [t0,t1]. The ray intersects the sphere as
- // long as [t0,t1] overlaps the ray t-interval [0,+infinity).
- std::array<Real, 2> rayInterval = { (Real)0, std::numeric_limits<Real>::max() };
- FIQuery<Real, std::array<Real, 2>, std::array<Real, 2>> iiQuery;
- auto iiResult = iiQuery(result.parameter, rayInterval);
- if (iiResult.intersect)
- {
- result.numIntersections = iiResult.numIntersections;
- result.parameter = iiResult.overlap;
- }
- else
- {
- result.intersect = false;
- result.numIntersections = 0;
- }
- }
- }
- };
- }
|