123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/IntrPlane3Plane3.h>
- #include <Mathematics/Circle3.h>
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Plane3<Real>, Circle3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- Result operator()(Plane3<Real> const& plane, Circle3<Real> const& circle)
- {
- Result result;
- // Construct the plane of the circle.
- Plane3<Real> cPlane(circle.normal, circle.center);
- // Compute the intersection of this plane with the input plane.
- FIQuery<Real, Plane3<Real>, Plane3<Real>> ppQuery;
- auto ppResult = ppQuery(plane, cPlane);
- if (!ppResult.intersect)
- {
- // Planes are parallel and nonintersecting.
- result.intersect = false;
- return result;
- }
- if (!ppResult.isLine)
- {
- // Planes are the same, the circle is the common intersection
- // set.
- result.intersect = true;
- return result;
- }
- // The planes intersect in a line. Locate one or two points that
- // are on the circle and line. If the line is t*D+P, the circle
- // center is C, and the circle radius is r, then
- // r^2 = |t*D+P-C|^2 = |D|^2*t^2 + 2*Dot(D,P-C)*t + |P-C|^2
- // This is a quadratic equation of the form
- // a2*t^2 + 2*a1*t + a0 = 0.
- Vector3<Real> diff = ppResult.line.origin - circle.center;
- Real a2 = Dot(ppResult.line.direction, ppResult.line.direction);
- Real a1 = Dot(diff, ppResult.line.direction);
- Real a0 = Dot(diff, diff) - circle.radius * circle.radius;
- // Real-valued roots imply an intersection.
- Real discr = a1 * a1 - a0 * a2;
- result.intersect = (discr >= (Real)0);
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Plane3<Real>, Circle3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- // If 'intersect' is true, the intersection is either 1 or 2 points
- // or the entire circle. When points, 'numIntersections' and
- // 'point' are valid. When a circle, 'circle' is set to the incoming
- // circle.
- bool isPoints;
- int numIntersections;
- Vector3<Real> point[2];
- Circle3<Real> circle;
- };
- Result operator()(Plane3<Real> const& plane, Circle3<Real> const& circle)
- {
- Result result;
- // Construct the plane of the circle.
- Plane3<Real> cPlane(circle.normal, circle.center);
- // Compute the intersection of this plane with the input plane.
- FIQuery<Real, Plane3<Real>, Plane3<Real>> ppQuery;
- auto ppResult = ppQuery(plane, cPlane);
- if (!ppResult.intersect)
- {
- // Planes are parallel and nonintersecting.
- result.intersect = false;
- return result;
- }
- if (!ppResult.isLine)
- {
- // Planes are the same, the circle is the common intersection
- // set.
- result.intersect = true;
- result.isPoints = false;
- result.circle = circle;
- return result;
- }
- // The planes intersect in a line. Locate one or two points that
- // are on the circle and line. If the line is t*D+P, the circle
- // center is C, and the circle radius is r, then
- // r^2 = |t*D+P-C|^2 = |D|^2*t^2 + 2*Dot(D,P-C)*t + |P-C|^2
- // This is a quadratic equation of the form
- // a2*t^2 + 2*a1*t + a0 = 0.
- Vector3<Real> diff = ppResult.line.origin - circle.center;
- Real a2 = Dot(ppResult.line.direction, ppResult.line.direction);
- Real a1 = Dot(diff, ppResult.line.direction);
- Real a0 = Dot(diff, diff) - circle.radius * circle.radius;
- Real discr = a1 * a1 - a0 * a2;
- if (discr < (Real)0)
- {
- // No real roots, the circle does not intersect the plane.
- result.intersect = false;
- return result;
- }
- result.isPoints = true;
- Real inv = ((Real)1) / a2;
- if (discr == (Real)0)
- {
- // One repeated root, the circle just touches the plane.
- result.numIntersections = 1;
- result.point[0] = ppResult.line.origin - (a1 * inv) * ppResult.line.direction;
- return result;
- }
- // Two distinct, real-valued roots, the circle intersects the
- // plane in two points.
- Real root = std::sqrt(discr);
- result.numIntersections = 2;
- result.point[0] = ppResult.line.origin - ((a1 + root) * inv) * ppResult.line.direction;
- result.point[1] = ppResult.line.origin - ((a1 - root) * inv) * ppResult.line.direction;
- return result;
- }
- };
- }
|