123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/IntrRay2OrientedBox2.h>
- #include <Mathematics/Cone.h>
- // The queries consider the box and cone to be solids.
- //
- // Define V = cone.ray.origin, D = cone.ray.direction, and cs = cone.cosAngle.
- // Define C = box.center, U0 = box.axis[0], U1 = box.axis[1],
- // e0 = box.extent[0], and e1 = box.extent[1]. A box point is
- // P = C + x*U0 + y*U1 where |x| <= e0 and |y| <= e1. Define the function
- // F(P) = Dot(D, (P-V)/Length(P-V)) = F(x,y)
- // = Dot(D, (x*U0 + y*U1 + (C-V))/|x*U0 + y*U1 + (C-V)|
- // = (a0*x + a1*y + a2)/(x^2 + y^2 + 2*b0*x + 2*b1*y + b2)^{1/2}
- // The function has an essential singularity when P = V. The box intersects
- // the cone (with positive-area overlap) when at least one of the four box
- // corners is strictly inside the cone. It is necessary that the numerator
- // of F(P) be positive at such a corner. The (interior of the) solid cone
- // is defined by the quadratic inequality
- // (Dot(D,P-V))^2 > |P-V|^2*(cone.cosAngle)^2
- // This inequality is inexpensive to compute. In summary, overlap occurs
- // when there is a box corner P for which
- // F(P) > 0 and (Dot(D,P-V))^2 > |P-V|^2*(cone.cosAngle)^2
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, OrientedBox<2, Real>, Cone<2, Real>>
- {
- public:
- struct Result
- {
- // The value of 'intersect' is true when there is a box point that
- // is strictly inside the cone. If the box just touches the cone
- // from the outside, an intersection is not reported, which
- // supports the common operation of culling objects outside a
- // cone.
- bool intersect;
- };
- Result operator()(OrientedBox<2, Real> const& box, Cone<2, Real>& cone)
- {
- Result result;
- TIQuery<Real, Ray<2, Real>, OrientedBox<2, Real>> rbQuery;
- auto rbResult = rbQuery(cone.ray, box);
- if (rbResult.intersect)
- {
- // The cone intersects the box.
- result.intersect = true;
- return result;
- }
- // Define V = cone.ray.origin, D = cone.ray.direction, and
- // cs = cone.cosAngle. Define C = box.center, U0 = box.axis[0],
- // U1 = box.axis[1], e0 = box.extent[0], and e1 = box.extent[1].
- // A box point is P = C + x*U0 + y*U1 where |x| <= e0 and
- // |y| <= e1. Define the function
- // F(x,y) = Dot(D, (P-V)/Length(P-V))
- // = Dot(D, (x*U0 + y*U1 + (C-V))/|x*U0 + y*U1 + (C-V)|
- // = (a0*x + a1*y + a2)/(x^2 + y^2 + 2*b0*x + 2*b1*y + b2)^{1/2}
- // The function has an essential singularity when P = V.
- Vector<2, Real> diff = box.center - cone.ray.origin;
- Real a0 = Dot(cone.ray.direction, box.axis[0]);
- Real a1 = Dot(cone.ray.direction, box.axis[1]);
- Real a2 = Dot(cone.ray.direction, diff);
- Real b0 = Dot(box.axis[0], diff);
- Real b1 = Dot(box.axis[1], diff);
- Real b2 = Dot(diff, diff);
- Real csSqr = cone.cosAngle * cone.cosAngle;
- for (int i1 = 0; i1 < 2; ++i1)
- {
- Real sign1 = i1 * (Real)2 - (Real)1;
- Real y = sign1 * box.extent[1];
- for (int i0 = 0; i0 < 2; ++i0)
- {
- Real sign0 = i0 * (Real)2 - (Real)1;
- Real x = sign0 * box.extent[0];
- Real fNumerator = a0 * x + a1 * y + a2;
- if (fNumerator > (Real)0)
- {
- Real dSqr = x * x + y * y + (b0 * x + b1 * y) * (Real)2 + b2;
- Real nSqr = fNumerator * fNumerator;
- if (nSqr > dSqr * csSqr)
- {
- result.intersect = true;
- return result;
- }
- }
- }
- }
- result.intersect = false;
- return result;
- }
- };
- }
|