123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/FIQuery.h>
- #include <Mathematics/TIQuery.h>
- #include <Mathematics/Line.h>
- #include <Mathematics/Triangle.h>
- #include <Mathematics/Vector3.h>
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Line3<Real>, Triangle3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- Result operator()(Line3<Real> const& line, Triangle3<Real> const& triangle)
- {
- Result result;
- // Compute the offset origin, edges, and normal.
- Vector3<Real> diff = line.origin - triangle.v[0];
- Vector3<Real> edge1 = triangle.v[1] - triangle.v[0];
- Vector3<Real> edge2 = triangle.v[2] - triangle.v[0];
- Vector3<Real> normal = Cross(edge1, edge2);
- // Solve Q + t*D = b1*E1 + b2*E2 (Q = diff, D = line direction,
- // E1 = edge1, E2 = edge2, N = Cross(E1,E2)) by
- // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
- // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
- // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
- Real DdN = Dot(line.direction, normal);
- Real sign;
- if (DdN > (Real)0)
- {
- sign = (Real)1;
- }
- else if (DdN < (Real)0)
- {
- sign = (Real)-1;
- DdN = -DdN;
- }
- else
- {
- // Line and triangle are parallel, call it a "no intersection"
- // even if the line and triangle are coplanar and
- // intersecting.
- result.intersect = false;
- return result;
- }
- Real DdQxE2 = sign * DotCross(line.direction, diff, edge2);
- if (DdQxE2 >= (Real)0)
- {
- Real DdE1xQ = sign * DotCross(line.direction, edge1, diff);
- if (DdE1xQ >= (Real)0)
- {
- if (DdQxE2 + DdE1xQ <= DdN)
- {
- // Line intersects triangle.
- result.intersect = true;
- return result;
- }
- // else: b1+b2 > 1, no intersection
- }
- // else: b2 < 0, no intersection
- }
- // else: b1 < 0, no intersection
- result.intersect = false;
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Line3<Real>, Triangle3<Real>>
- {
- public:
- struct Result
- {
- Result()
- :
- intersect(false),
- parameter((Real)0),
- triangleBary{ (Real)0, (Real)0, (Real)0 },
- point{ (Real)0, (Real)0, (Real)0 }
- {
- }
- bool intersect;
- Real parameter;
- std::array<Real, 3> triangleBary;
- Vector3<Real> point;
- };
- Result operator()(Line3<Real> const& line, Triangle3<Real> const& triangle)
- {
- Result result;
- // Compute the offset origin, edges, and normal.
- Vector3<Real> diff = line.origin - triangle.v[0];
- Vector3<Real> edge1 = triangle.v[1] - triangle.v[0];
- Vector3<Real> edge2 = triangle.v[2] - triangle.v[0];
- Vector3<Real> normal = Cross(edge1, edge2);
- // Solve Q + t*D = b1*E1 + b2*E2 (Q = diff, D = line direction,
- // E1 = edge1, E2 = edge2, N = Cross(E1,E2)) by
- // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
- // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
- // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
- Real DdN = Dot(line.direction, normal);
- Real sign;
- if (DdN > (Real)0)
- {
- sign = (Real)1;
- }
- else if (DdN < (Real)0)
- {
- sign = (Real)-1;
- DdN = -DdN;
- }
- else
- {
- // Line and triangle are parallel, call it a "no intersection"
- // even if the line and triangle are coplanar and
- // intersecting.
- result.intersect = false;
- return result;
- }
- Real DdQxE2 = sign * DotCross(line.direction, diff, edge2);
- if (DdQxE2 >= (Real)0)
- {
- Real DdE1xQ = sign * DotCross(line.direction, edge1, diff);
- if (DdE1xQ >= (Real)0)
- {
- if (DdQxE2 + DdE1xQ <= DdN)
- {
- // Line intersects triangle.
- Real QdN = -sign * Dot(diff, normal);
- Real inv = (Real)1 / DdN;
- result.intersect = true;
- result.parameter = QdN * inv;
- result.triangleBary[1] = DdQxE2 * inv;
- result.triangleBary[2] = DdE1xQ * inv;
- result.triangleBary[0] =
- (Real)1 - result.triangleBary[1] - result.triangleBary[2];
- result.point = line.origin + result.parameter * line.direction;
- return result;
- }
- // else: b1+b2 > 1, no intersection
- }
- // else: b2 < 0, no intersection
- }
- // else: b1 < 0, no intersection
- result.intersect = false;
- return result;
- }
- };
- }
|