123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Vector3.h>
- #include <Mathematics/Cone.h>
- #include <Mathematics/Line.h>
- #include <Mathematics/QFNumber.h>
- #include <Mathematics/IntrIntervals.h>
- // The queries consider the cone to be single sided and solid. The
- // cone height range is [hmin,hmax]. The cone can be infinite where
- // hmin = 0 and hmax = +infinity, infinite truncated where hmin > 0
- // and hmax = +infinity, finite where hmin = 0 and hmax < +infinity,
- // or a cone frustum where hmin > 0 and hmax < +infinity. The
- // algorithm details are found in
- // https://www.geometrictools.com/Documentation/IntersectionLineCone.pdf
- namespace WwiseGTE
- {
- template <typename Real>
- class FIQuery<Real, Line3<Real>, Cone3<Real>>
- {
- public:
- // The rational quadratic field type with elements x + y * sqrt(d).
- // This type supports error-free computation.
- using QFN1 = QFNumber<Real, 1>;
- // Convenient naming for interval find-intersection queries.
- using IIQuery = FIIntervalInterval<QFN1>;
- struct Result
- {
- // Because the intersection of line and cone with infinite height
- // can be a ray or a line, we use a 'type' value that allows you
- // to decide how to interpret the t[] and P[] values.
- // No interesection.
- static int const isEmpty = 0;
- // t[0] is finite, t[1] is set to t[0], P[0] is the point of
- // intersection, P[1] is set to P[0].
- static int const isPoint = 1;
- // t[0] and t[1] are finite with t[0] < t[1], P[0] and P[1] are
- // the endpoints of the segment of intersection.
- static int const isSegment = 2;
- // Dot(line.direction, cone.ray.direction) > 0:
- // t[0] is finite, t[1] is +infinity (set to +1), P[0] is the ray
- // origin, P[1] is the ray direction (set to line.direction).
- // NOTE: The ray starts at P[0] and you walk away from it in the
- // line direction.
- static int const isRayPositive = 3;
- // Dot(line.direction, cone.ray.direction) < 0:
- // t[0] is -infinity (set to -1), t[1] is finite, P[0] is the ray
- // endpoint, P[1] is the ray direction (set to line.direction).
- // NOTE: The ray ends at P[1] and you walk towards it in the line
- // direction.
- static int const isRayNegative = 4;
- Result()
- :
- intersect(false),
- type(Result::isEmpty)
- {
- // t[], h[] and P[] are initialized to zero via QFN1 constructors
- }
- void ComputePoints(Vector3<Real> const& origin, Vector3<Real> const& direction)
- {
- switch (type)
- {
- case Result::isEmpty:
- for (int i = 0; i < 3; ++i)
- {
- P[0][i] = QFN1();
- P[1][i] = P[0][i];
- }
- break;
- case Result::isPoint:
- for (int i = 0; i < 3; ++i)
- {
- P[0][i] = origin[i] + direction[i] * t[0];
- P[1][i] = P[0][i];
- }
- break;
- case Result::isSegment:
- for (int i = 0; i < 3; ++i)
- {
- P[0][i] = origin[i] + direction[i] * t[0];
- P[1][i] = origin[i] + direction[i] * t[1];
- }
- break;
- case Result::isRayPositive:
- for (int i = 0; i < 3; ++i)
- {
- P[0][i] = origin[i] + direction[i] * t[0];
- P[1][i] = QFN1(direction[i], 0, t[0].d);
- }
- break;
- case Result::isRayNegative:
- for (int i = 0; i < 3; ++i)
- {
- P[0][i] = origin[i] + direction[i] * t[1];
- P[1][i] = QFN1(direction[i], 0, t[1].d);
- }
- break;
- default:
- LogError("Invalid case.");
- break;
- }
- }
- template <typename OutputType>
- static void Convert(QFN1 const& input, OutputType& output)
- {
- output = static_cast<Real>(input);
- }
- template <typename OutputType>
- static void Convert(Vector3<QFN1> const& input, Vector3<OutputType>& output)
- {
- for (int i = 0; i < 3; ++i)
- {
- output[i] = static_cast<Real>(input[i]);
- }
- }
- bool intersect;
- int type;
- std::array<QFN1, 2> t;
- std::array<Vector3<QFN1>, 2> P;
- };
- Result operator()(Line3<Real> const& line, Cone3<Real> const& cone)
- {
- Result result;
- DoQuery(line.origin, line.direction, cone, result);
- result.ComputePoints(line.origin, line.direction);
- result.intersect = (result.type != Result::isEmpty);
- return result;
- }
- protected:
- // The result.type and result.t[] values are computed by DoQuery. The
- // result.P[] and result.intersect values are computed from them in
- // the operator()(...) function.
- void DoQuery(Vector3<Real> const& lineOrigin, Vector3<Real> const& lineDirection,
- Cone3<Real> const& cone, Result& result)
- {
- // The algorithm implemented in DoQuery avoids extra branches if
- // we choose a line whose direction forms an acute angle with the
- // cone direction.
- if (Dot(lineDirection, cone.ray.direction) >= (Real)0)
- {
- DoQuerySpecial(lineOrigin, lineDirection, cone, result);
- }
- else
- {
- DoQuerySpecial(lineOrigin, -lineDirection, cone, result);
- result.t[0] = -result.t[0];
- result.t[1] = -result.t[1];
- std::swap(result.t[0], result.t[1]);
- if (result.type == Result::isRayPositive)
- {
- result.type = Result::isRayNegative;
- }
- }
- }
- void DoQuerySpecial(Vector3<Real> const& lineOrigin, Vector3<Real> const& lineDirection,
- Cone3<Real> const& cone, Result& result)
- {
- // Compute the number of real-valued roots and represent them
- // using rational quadratic field elements to support when Real
- // is an exact rational arithmetic type. TODO: Adjust by noting
- // that we should use D/|D| because a normalized floating-point
- // D still might not have |D| = 1 (although it is close to 1).
- Vector3<Real> PmV = lineOrigin - cone.ray.origin;
- Real UdU = Dot(lineDirection, lineDirection);
- Real DdU = Dot(cone.ray.direction, lineDirection); // >= 0
- Real DdPmV = Dot(cone.ray.direction, PmV);
- Real UdPmV = Dot(lineDirection, PmV);
- Real PmVdPmV = Dot(PmV, PmV);
- Real c2 = DdU * DdU - cone.cosAngleSqr * UdU;
- Real c1 = DdU * DdPmV - cone.cosAngleSqr * UdPmV;
- Real c0 = DdPmV * DdPmV - cone.cosAngleSqr * PmVdPmV;
- if (c2 != (Real)0)
- {
- Real discr = c1 * c1 - c0 * c2;
- if (discr < (Real)0)
- {
- CaseC2NotZeroDiscrNeg(result);
- }
- else if (discr > (Real)0)
- {
- CaseC2NotZeroDiscrPos(c1, c2, discr, DdU, DdPmV, cone, result);
- }
- else // discr == 0
- {
- CaseC2NotZeroDiscrZero(c1, c2, UdU, UdPmV, DdU, DdPmV, cone, result);
- }
- }
- else if (c1 != (Real)0)
- {
- CaseC2ZeroC1NotZero(c0, c1, DdU, DdPmV, cone, result);
- }
- else
- {
- CaseC2ZeroC1Zero(c0, UdU, UdPmV, DdU, DdPmV, cone, result);
- }
- }
- void CaseC2NotZeroDiscrNeg(Result& result)
- {
- // Block 0. The quadratic has no real-valued roots. The line does
- // not intersect the double-sided cone.
- SetEmpty(result);
- }
- void CaseC2NotZeroDiscrPos(Real const& c1, Real const& c2, Real const& discr,
- Real const& DdU, Real const& DdPmV, Cone3<Real> const& cone, Result& result)
- {
- // The quadratic has two distinct real-valued roots, t[0] and t[1]
- // with t[0] < t[1].
- Real x = -c1 / c2;
- Real y = (c2 > (Real)0 ? (Real)1 / c2 : (Real)-1 / c2);
- std::array<QFN1, 2> t = { QFN1(x, -y, discr), QFN1(x, y, discr) };
- // Compute the signed heights at the intersection points, h[0] and
- // h[1] with h[0] <= h[1]. The ordering is guaranteed because we
- // have arranged for the input line to satisfy Dot(D,U) >= 0.
- std::array<QFN1, 2> h = { t[0] * DdU + DdPmV, t[1] * DdU + DdPmV };
- QFN1 zero(0, 0, discr);
- if (h[0] >= zero)
- {
- // Block 1. The line intersects the positive cone in two
- // points.
- SetSegmentClamp(t, h, DdU, DdPmV, cone, result);
- }
- else if (h[1] <= zero)
- {
- // Block 2. The line intersects the negative cone in two
- // points.
- SetEmpty(result);
- }
- else // h[0] < 0 < h[1]
- {
- // Block 3. The line intersects the positive cone in a single
- // point and the negative cone in a single point.
- SetRayClamp(h[1], DdU, DdPmV, cone, result);
- }
- }
- void CaseC2NotZeroDiscrZero(Real const& c1, Real const& c2,
- Real const& UdU, Real const& UdPmV, Real const& DdU, Real const& DdPmV,
- Cone3<Real> const& cone, Result& result)
- {
- Real t = -c1 / c2;
- if (t * UdU + UdPmV == (Real)0)
- {
- // To get here, it must be that V = P + (-c1/c2) * U, where
- // U is not necessarily a unit-length vector. The line
- // intersects the cone vertex.
- if (c2 < (Real)0)
- {
- // Block 4. The line is outside the double-sided cone and
- // intersects it only at V.
- SetPointClamp(QFN1(t, 0, 0), QFN1(0, 0, 0), cone, result);
- }
- else
- {
- // Block 5. The line is inside the double-sided cone, so
- // the intersection is a ray with origin V.
- SetRayClamp(QFN1(0, 0, 0), DdU, DdPmV, cone, result);
- }
- }
- else
- {
- // The line is tangent to the cone at a point different from
- // the vertex.
- Real h = t * DdU + DdPmV;
- if (h >= (Real)0)
- {
- // Block 6. The line is tangent to the positive cone.
- SetPointClamp(QFN1(t, 0, 0), QFN1(h, 0, 0), cone, result);
- }
- else
- {
- // Block 7. The line is tangent to the negative cone.
- SetEmpty(result);
- }
- }
- }
- void CaseC2ZeroC1NotZero(Real const& c0, Real const& c1, Real const& DdU,
- Real const& DdPmV, Cone3<Real> const& cone, Result& result)
- {
- // U is a direction vector on the cone boundary. Compute the
- // t-value for the intersection point and compute the
- // corresponding height h to determine whether that point is on
- // the positive cone or negative cone.
- Real t = (Real)-0.5 * c0 / c1;
- Real h = t * DdU + DdPmV;
- if (h > (Real)0)
- {
- // Block 8. The line intersects the positive cone and the ray
- // of intersection is interior to the positive cone. The
- // intersection is a ray or segment.
- SetRayClamp(QFN1(h, 0, 0), DdU, DdPmV, cone, result);
- }
- else
- {
- // Block 9. The line intersects the negative cone and the ray
- // of intersection is interior to the negative cone.
- SetEmpty(result);
- }
- }
- void CaseC2ZeroC1Zero(Real const& c0, Real const& UdU, Real const& UdPmV,
- Real const& DdU, Real const& DdPmV, Cone3<Real> const& cone, Result& result)
- {
- if (c0 != (Real)0)
- {
- // Block 10. The line does not intersect the double-sided
- // cone.
- SetEmpty(result);
- }
- else
- {
- // Block 11. The line is on the cone boundary. The
- // intersection with the positive cone is a ray that contains
- // the cone vertex. The intersection is either a ray or
- // segment.
- Real t = -UdPmV / UdU;
- Real h = t * DdU + DdPmV;
- SetRayClamp(QFN1(h, 0, 0), DdU, DdPmV, cone, result);
- }
- }
- void SetEmpty(Result& result)
- {
- result.type = Result::isEmpty;
- result.t[0] = QFN1();
- result.t[1] = QFN1();
- }
- void SetPoint(QFN1 const& t, Result& result)
- {
- result.type = Result::isPoint;
- result.t[0] = t;
- result.t[1] = result.t[0];
- }
- void SetSegment(QFN1 const& t0, QFN1 const& t1, Result& result)
- {
- result.type = Result::isSegment;
- result.t[0] = t0;
- result.t[1] = t1;
- }
- void SetRayPositive(QFN1 const& t, Result& result)
- {
- result.type = Result::isRayPositive;
- result.t[0] = t;
- result.t[1] = QFN1(+1, 0, t.d); // +infinity
- }
- void SetRayNegative(QFN1 const& t, Result& result)
- {
- result.type = Result::isRayNegative;
- result.t[0] = QFN1(-1, 0, t.d); // +infinity
- result.t[1] = t;
- }
- void SetPointClamp(QFN1 const& t, QFN1 const& h,
- Cone3<Real> const& cone, Result& result)
- {
- if (cone.HeightInRange(h.x[0]))
- {
- // P0.
- SetPoint(t, result);
- }
- else
- {
- // P1.
- SetEmpty(result);
- }
- }
- void SetSegmentClamp(std::array<QFN1, 2> const& t, std::array<QFN1, 2> const& h,
- Real const& DdU, Real const& DdPmV, Cone3<Real> const& cone, Result& result)
- {
- std::array<QFN1, 2> hrange =
- {
- QFN1(cone.GetMinHeight(), 0, h[0].d),
- QFN1(cone.GetMaxHeight(), 0, h[0].d)
- };
- if (h[1] > h[0])
- {
- auto iir = (cone.IsFinite() ? IIQuery()(h, hrange) : IIQuery()(h, hrange[0], true));
- if (iir.numIntersections == 2)
- {
- // S0.
- SetSegment((iir.overlap[0] - DdPmV) / DdU, (iir.overlap[1] - DdPmV) / DdU, result);
- }
- else if (iir.numIntersections == 1)
- {
- // S1.
- SetPoint((iir.overlap[0] - DdPmV) / DdU, result);
- }
- else // iir.numIntersections == 0
- {
- // S2.
- SetEmpty(result);
- }
- }
- else // h[1] == h[0]
- {
- if (hrange[0] <= h[0] && (cone.IsFinite() ? h[0] <= hrange[1] : true))
- {
- // S3. DdU > 0 and the line is not perpendicular to the
- // cone axis.
- SetSegment(t[0], t[1], result);
- }
- else
- {
- // S4. DdU == 0 and the line is perpendicular to the
- // cone axis.
- SetEmpty(result);
- }
- }
- }
- void SetRayClamp(QFN1 const& h, Real const& DdU, Real const& DdPmV,
- Cone3<Real> const& cone, Result& result)
- {
- std::array<QFN1, 2> hrange =
- {
- QFN1(cone.GetMinHeight(), 0, h.d),
- QFN1(cone.GetMaxHeight(), 0, h.d)
- };
- if (cone.IsFinite())
- {
- auto iir = IIQuery()(hrange, h, true);
- if (iir.numIntersections == 2)
- {
- // R0.
- SetSegment((iir.overlap[0] - DdPmV) / DdU, (iir.overlap[1] - DdPmV) / DdU, result);
- }
- else if (iir.numIntersections == 1)
- {
- // R1.
- SetPoint((iir.overlap[0] - DdPmV) / DdU, result);
- }
- else // iir.numIntersections == 0
- {
- // R2.
- SetEmpty(result);
- }
- }
- else
- {
- // R3.
- SetRayPositive((std::max(hrange[0], h) - DdPmV) / DdU, result);
- }
- }
- };
- }
|