123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/FIQuery.h>
- #include <Mathematics/TIQuery.h>
- #include <Mathematics/DistLineSegment.h>
- #include <Mathematics/Capsule.h>
- #include <Mathematics/Vector3.h>
- // The queries consider the capsule to be a solid.
- //
- // The test-intersection queries are based on distance computations.
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Line3<Real>, Capsule3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- Result operator()(Line3<Real> const& line, Capsule3<Real> const& capsule)
- {
- Result result;
- DCPQuery<Real, Line3<Real>, Segment3<Real>> lsQuery;
- auto lsResult = lsQuery(line, capsule.segment);
- result.intersect = (lsResult.distance <= capsule.radius);
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Line3<Real>, Capsule3<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- int numIntersections;
- std::array<Real, 2> parameter;
- std::array<Vector3<Real>, 2> point;
- };
- Result operator()(Line3<Real> const& line, Capsule3<Real> const& capsule)
- {
- Result result;
- DoQuery(line.origin, line.direction, capsule, result);
- for (int i = 0; i < result.numIntersections; ++i)
- {
- result.point[i] = line.origin + result.parameter[i] * line.direction;
- }
- return result;
- }
- protected:
- void DoQuery(Vector3<Real> const& lineOrigin,
- Vector3<Real> const& lineDirection, Capsule3<Real> const& capsule,
- Result& result)
- {
- // Initialize the result as if there is no intersection. If we
- // discover an intersection, these values will be modified
- // accordingly.
- result.intersect = false;
- result.numIntersections = 0;
- // Create a coordinate system for the capsule. In this system,
- // the capsule segment center C is the origin and the capsule axis
- // direction W is the z-axis. U and V are the other coordinate
- // axis directions. If P = x*U+y*V+z*W, the cylinder containing
- // the capsule wall is x^2 + y^2 = r^2, where r is the capsule
- // radius. The finite cylinder that makes up the capsule minus
- // its hemispherical end caps has z-values |z| <= e, where e is
- // the extent of the capsule segment. The top hemisphere cap is
- // x^2+y^2+(z-e)^2 = r^2 for z >= e, and the bottom hemisphere cap
- // is x^2+y^2+(z+e)^2 = r^2 for z <= -e.
- Vector3<Real> segOrigin, segDirection;
- Real segExtent;
- capsule.segment.GetCenteredForm(segOrigin, segDirection, segExtent);
- Vector3<Real> basis[3]; // {W, U, V}
- basis[0] = segDirection;
- ComputeOrthogonalComplement(1, basis);
- Real rSqr = capsule.radius * capsule.radius;
- // Convert incoming line origin to capsule coordinates.
- Vector3<Real> diff = lineOrigin - segOrigin;
- Vector3<Real> P{ Dot(basis[1], diff), Dot(basis[2], diff), Dot(basis[0], diff) };
- // Get the z-value, in capsule coordinates, of the incoming line's
- // unit-length direction.
- Real dz = Dot(basis[0], lineDirection);
- if (std::fabs(dz) == (Real)1)
- {
- // The line is parallel to the capsule axis. Determine
- // whether the line intersects the capsule hemispheres.
- Real radialSqrDist = rSqr - P[0] * P[0] - P[1] * P[1];
- if (radialSqrDist >= (Real)0)
- {
- // The line intersects the hemispherical caps.
- result.intersect = true;
- result.numIntersections = 2;
- Real zOffset = std::sqrt(radialSqrDist) + segExtent;
- if (dz > (Real)0)
- {
- result.parameter[0] = -P[2] - zOffset;
- result.parameter[1] = -P[2] + zOffset;
- }
- else
- {
- result.parameter[0] = P[2] - zOffset;
- result.parameter[1] = P[2] + zOffset;
- }
- }
- // else: The line outside the capsule's cylinder, no
- // intersection.
- return;
- }
- // Convert the incoming line unit-length direction to capsule
- // coordinates.
- Vector3<Real> D{ Dot(basis[1], lineDirection), Dot(basis[2], lineDirection), dz };
- // Test intersection of line P+t*D with infinite cylinder
- // x^2+y^2 = r^2. This reduces to computing the roots of a
- // quadratic equation. If P = (px,py,pz) and D = (dx,dy,dz), then
- // the quadratic equation is
- // (dx^2+dy^2)*t^2 + 2*(px*dx+py*dy)*t + (px^2+py^2-r^2) = 0
- Real a0 = P[0] * P[0] + P[1] * P[1] - rSqr;
- Real a1 = P[0] * D[0] + P[1] * D[1];
- Real a2 = D[0] * D[0] + D[1] * D[1];
- Real discr = a1 * a1 - a0 * a2;
- if (discr < (Real)0)
- {
- // The line does not intersect the infinite cylinder, so it
- // cannot intersect the capsule.
- return;
- }
- Real root, inv, tValue, zValue;
- if (discr > (Real)0)
- {
- // The line intersects the infinite cylinder in two places.
- root = std::sqrt(discr);
- inv = (Real)1 / a2;
- tValue = (-a1 - root) * inv;
- zValue = P[2] + tValue * D[2];
- if (std::fabs(zValue) <= segExtent)
- {
- result.intersect = true;
- result.parameter[result.numIntersections++] = tValue;
- }
- tValue = (-a1 + root) * inv;
- zValue = P[2] + tValue * D[2];
- if (std::fabs(zValue) <= segExtent)
- {
- result.intersect = true;
- result.parameter[result.numIntersections++] = tValue;
- }
- if (result.numIntersections == 2)
- {
- // The line intersects the capsule wall in two places.
- return;
- }
- }
- else
- {
- // The line is tangent to the infinite cylinder but intersects
- // the cylinder in a single point.
- tValue = -a1 / a2;
- zValue = P[2] + tValue * D[2];
- if (std::fabs(zValue) <= segExtent)
- {
- result.intersect = true;
- result.numIntersections = 1;
- result.parameter[0] = tValue;
- // Used by derived classes.
- result.parameter[1] = result.parameter[0];
- return;
- }
- }
- // Test intersection with bottom hemisphere. The quadratic
- // equation is
- // t^2 + 2*(px*dx+py*dy+(pz+e)*dz)*t
- // + (px^2+py^2+(pz+e)^2-r^2) = 0
- // Use the fact that currently a1 = px*dx+py*dy and
- // a0 = px^2+py^2-r^2. The leading coefficient is a2 = 1, so no
- // need to include in the construction.
- Real PZpE = P[2] + segExtent;
- a1 += PZpE * D[2];
- a0 += PZpE * PZpE;
- discr = a1 * a1 - a0;
- if (discr > (Real)0)
- {
- root = std::sqrt(discr);
- tValue = -a1 - root;
- zValue = P[2] + tValue * D[2];
- if (zValue <= -segExtent)
- {
- result.parameter[result.numIntersections++] = tValue;
- if (result.numIntersections == 2)
- {
- result.intersect = true;
- if (result.parameter[0] > result.parameter[1])
- {
- std::swap(result.parameter[0], result.parameter[1]);
- }
- return;
- }
- }
- tValue = -a1 + root;
- zValue = P[2] + tValue * D[2];
- if (zValue <= -segExtent)
- {
- result.parameter[result.numIntersections++] = tValue;
- if (result.numIntersections == 2)
- {
- result.intersect = true;
- if (result.parameter[0] > result.parameter[1])
- {
- std::swap(result.parameter[0], result.parameter[1]);
- }
- return;
- }
- }
- }
- else if (discr == (Real)0)
- {
- tValue = -a1;
- zValue = P[2] + tValue * D[2];
- if (zValue <= -segExtent)
- {
- result.parameter[result.numIntersections++] = tValue;
- if (result.numIntersections == 2)
- {
- result.intersect = true;
- if (result.parameter[0] > result.parameter[1])
- {
- std::swap(result.parameter[0], result.parameter[1]);
- }
- return;
- }
- }
- }
- // Test intersection with top hemisphere. The quadratic equation
- // is
- // t^2 + 2*(px*dx+py*dy+(pz-e)*dz)*t
- // + (px^2+py^2+(pz-e)^2-r^2) = 0
- // Use the fact that currently a1 = px*dx+py*dy+(pz+e)*dz and
- // a0 = px^2+py^2+(pz+e)^2-r^2. The leading coefficient is a2 = 1,
- // so no need to include in the construction.
- a1 -= ((Real)2) * segExtent * D[2];
- a0 -= ((Real)4) * segExtent * P[2];
- discr = a1 * a1 - a0;
- if (discr > (Real)0)
- {
- root = std::sqrt(discr);
- tValue = -a1 - root;
- zValue = P[2] + tValue * D[2];
- if (zValue >= segExtent)
- {
- result.parameter[result.numIntersections++] = tValue;
- if (result.numIntersections == 2)
- {
- result.intersect = true;
- if (result.parameter[0] > result.parameter[1])
- {
- std::swap(result.parameter[0], result.parameter[1]);
- }
- return;
- }
- }
- tValue = -a1 + root;
- zValue = P[2] + tValue * D[2];
- if (zValue >= segExtent)
- {
- result.parameter[result.numIntersections++] = tValue;
- if (result.numIntersections == 2)
- {
- result.intersect = true;
- if (result.parameter[0] > result.parameter[1])
- {
- std::swap(result.parameter[0], result.parameter[1]);
- }
- return;
- }
- }
- }
- else if (discr == (Real)0)
- {
- tValue = -a1;
- zValue = P[2] + tValue * D[2];
- if (zValue >= segExtent)
- {
- result.parameter[result.numIntersections++] = tValue;
- if (result.numIntersections == 2)
- {
- result.intersect = true;
- if (result.parameter[0] > result.parameter[1])
- {
- std::swap(result.parameter[0], result.parameter[1]);
- }
- return;
- }
- }
- }
- if (result.numIntersections == 1)
- {
- // Used by derived classes.
- result.parameter[1] = result.parameter[0];
- }
- }
- };
- }
|