123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/FIQuery.h>
- #include <Mathematics/TIQuery.h>
- #include <array>
- // The intervals are of the form [t0,t1], [t0,+infinity) or (-infinity,t1].
- // Degenerate intervals are allowed (t0 = t1). The queries do not perform
- // validation on the input intervals to test whether t0 <= t1.
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, std::array<Real, 2>, std::array<Real, 2>>
- {
- public:
- // The query tests overlap, whether a single point or an entire
- // interval.
- struct Result
- {
- bool intersect;
- // Dynamic queries (intervals moving with constant speeds). If
- // 'intersect' is true, the contact times are valid and
- // 0 <= firstTime <= lastTime, firstTime <= maxTime
- // If 'intersect' is false, there are two cases reported. If the
- // intervals will intersect at firstTime > maxTime, the contact
- // times are reported just as when 'intersect' is true. However,
- // if the intervals will not intersect, then firstTime and
- // lastTime are both set to zero (invalid because 'intersect' is
- // false).
- Real firstTime, lastTime;
- };
- // Static query. The firstTime and lastTime values are invalid
- // regardless of the value of 'intersect'.
- Result operator()(std::array<Real, 2> const& interval0, std::array<Real, 2> const& interval1)
- {
- Result result;
- result.intersect = (interval0[0] <= interval1[1] && interval0[1] >= interval1[0]);
- result.firstTime = (Real)0;
- result.lastTime = (Real)0;
- return result;
- }
- // Static queries where at least one interval is semiinfinite. The
- // two types of semiinfinite intervals are [a,+infinity), which I call
- // a positive-infinite interval, and (-infinity,a], which I call a
- // negative-infinite interval.
- Result operator()(std::array<Real, 2> const& finite, Real const& a, bool isPositiveInfinite)
- {
- Result result;
- result.firstTime = (Real)0;
- result.lastTime = (Real)0;
- if (isPositiveInfinite)
- {
- result.intersect = (finite[1] >= a);
- }
- else // is negative-infinite
- {
- result.intersect = (finite[0] <= a);
- }
- return result;
- }
- Result operator()(Real const& a0, bool isPositiveInfinite0,
- Real const& a1, bool isPositiveInfinite1)
- {
- Result result;
- result.firstTime = (Real)0;
- result.lastTime = (Real)0;
- if (isPositiveInfinite0)
- {
- if (isPositiveInfinite1)
- {
- result.intersect = true;
- }
- else // interval1 is negative-infinite
- {
- result.intersect = (a0 <= a1);
- }
- }
- else // interval0 is negative-infinite
- {
- if (isPositiveInfinite1)
- {
- result.intersect = (a0 >= a1);
- }
- else // interval1 is negative-infinite
- {
- result.intersect = true;
- }
- }
- return result;
- }
- // Dynamic query. Current time is 0, maxTime > 0 is required.
- Result operator()(Real maxTime, std::array<Real, 2> const& interval0,
- Real speed0, std::array<Real, 2> const& interval1, Real speed1)
- {
- Result result;
- if (interval0[1] < interval1[0])
- {
- // interval0 initially to the left of interval1.
- Real diffSpeed = speed0 - speed1;
- if (diffSpeed > (Real)0)
- {
- // The intervals must move towards each other. 'intersect'
- // is true when the intervals will intersect by maxTime.
- Real diffPos = interval1[0] - interval0[1];
- Real invDiffSpeed = (Real)1 / diffSpeed;
- result.intersect = (diffPos <= maxTime * diffSpeed);
- result.firstTime = diffPos * invDiffSpeed;
- result.lastTime = (interval1[1] - interval0[0]) * invDiffSpeed;
- return result;
- }
- }
- else if (interval0[0] > interval1[1])
- {
- // interval0 initially to the right of interval1.
- Real diffSpeed = speed1 - speed0;
- if (diffSpeed > (Real)0)
- {
- // The intervals must move towards each other. 'intersect'
- // is true when the intervals will intersect by maxTime.
- Real diffPos = interval0[0] - interval1[1];
- Real invDiffSpeed = (Real)1 / diffSpeed;
- result.intersect = (diffPos <= maxTime * diffSpeed);
- result.firstTime = diffPos * invDiffSpeed;
- result.lastTime = (interval0[1] - interval1[0]) * invDiffSpeed;
- return result;
- }
- }
- else
- {
- // The intervals are initially intersecting.
- result.intersect = true;
- result.firstTime = (Real)0;
- if (speed1 > speed0)
- {
- result.lastTime = (interval0[1] - interval1[0]) / (speed1 - speed0);
- }
- else if (speed1 < speed0)
- {
- result.lastTime = (interval1[1] - interval0[0]) / (speed0 - speed1);
- }
- else
- {
- result.lastTime = std::numeric_limits<Real>::max();
- }
- return result;
- }
- result.intersect = false;
- result.firstTime = (Real)0;
- result.lastTime = (Real)0;
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, std::array<Real, 2>, std::array<Real, 2>>
- {
- public:
- // The query finds overlap, whether a single point or an entire
- // interval.
- struct Result
- {
- Result()
- :
- intersect(false),
- numIntersections(0),
- overlap{ (Real)0, (Real)0 },
- type(isEmpty),
- firstTime((Real)0),
- lastTime((Real)0)
- {
- }
- bool intersect;
- // Static queries (no motion of intervals over time). The number
- // of number of intersections is 0 (no overlap), 1 (intervals are
- // just touching), or 2 (intervals overlap in an interval). If
- // 'intersect' is false, numIntersections is 0 and 'overlap' is
- // set to [0,0]. If 'intersect' is true, numIntersections is
- // 1 or 2. When 1, 'overlap' is set to [x,x], which is degenerate
- // and represents the single intersection point x. When 2,
- // 'overlap' is the interval of intersection.
- int numIntersections;
- std::array<Real, 2> overlap;
- // No intersection.
- static int const isEmpty = 0;
- // Intervals touch at an endpoint, [t0,t0].
- static int const isPoint = 1;
- // Finite-length interval of intersection, [t0,t1].
- static int const isFinite = 2;
- // Smiinfinite interval of intersection, [t0,+infinity). The
- // result.overlap[0] is t0 and result.overlap[1] is +1 as a
- // message that the right endpoint is +infinity (you still need
- // the result.type to know this interpretation).
- static int const isPositiveInfinite = 3;
- // Semiinfinite interval of intersection, (-infinity,t1]. The
- // result.overlap[0] is =1 as a message that the left endpoint is
- // -infinity (you still need the result.type to know this
- // interpretation). The result.overlap[1] is t1.
- static int const isNegativeInfinite = 4;
- // The dynamic queries all set the type to isDynamicQuery because
- // the queries look for time of first and last contact.
- static int const isDynamicQuery = 5;
- // The type is one of isEmpty, isPoint, isFinite,
- // isPositiveInfinite, isNegativeInfinite or isDynamicQuery.
- int type;
- // Dynamic queries (intervals moving with constant speeds). If
- // 'intersect' is true, the contact times are valid and
- // 0 <= firstTime <= lastTime, firstTime <= maxTime
- // If 'intersect' is false, there are two cases reported. If the
- // intervals will intersect at firstTime > maxTime, the contact
- // times are reported just as when 'intersect' is true. However,
- // if the intervals will not intersect, then firstTime and
- // lastTime are both set to zero (invalid because 'intersect' is
- // false).
- Real firstTime, lastTime;
- };
- // Static query.
- Result operator()(std::array<Real, 2> const& interval0, std::array<Real, 2> const& interval1)
- {
- Result result;
- if (interval0[1] < interval1[0] || interval0[0] > interval1[1])
- {
- result.numIntersections = 0;
- result.overlap[0] = (Real)0;
- result.overlap[1] = (Real)0;
- result.type = Result::isEmpty;
- }
- else if (interval0[1] > interval1[0])
- {
- if (interval0[0] < interval1[1])
- {
- result.overlap[0] = (interval0[0] < interval1[0] ? interval1[0] : interval0[0]);
- result.overlap[1] = (interval0[1] > interval1[1] ? interval1[1] : interval0[1]);
- if (result.overlap[0] < result.overlap[1])
- {
- result.numIntersections = 2;
- result.type = Result::isFinite;
- }
- else
- {
- result.numIntersections = 1;
- result.type = Result::isPoint;
- }
- }
- else // interval0[0] == interval1[1]
- {
- result.numIntersections = 1;
- result.overlap[0] = interval0[0];
- result.overlap[1] = result.overlap[0];
- result.type = Result::isPoint;
- }
- }
- else // interval0[1] == interval1[0]
- {
- result.numIntersections = 1;
- result.overlap[0] = interval0[1];
- result.overlap[1] = result.overlap[0];
- result.type = Result::isPoint;
- }
- result.intersect = (result.numIntersections > 0);
- return result;
- }
- // Static queries where at least one interval is semiinfinite. The
- // two types of semiinfinite intervals are [a,+infinity), which I call
- // a positive-infinite interval, and (-infinity,a], which I call a
- // negative-infinite interval.
- Result operator()(std::array<Real, 2> const& finite, Real const& a, bool isPositiveInfinite)
- {
- Result result;
- if (isPositiveInfinite)
- {
- if (finite[1] > a)
- {
- result.overlap[0] = std::max(finite[0], a);
- result.overlap[1] = finite[1];
- if (result.overlap[0] < result.overlap[1])
- {
- result.numIntersections = 2;
- result.type = Result::isFinite;
- }
- else
- {
- result.numIntersections = 1;
- result.type = Result::isPoint;
- }
- }
- else if (finite[1] == a)
- {
- result.numIntersections = 1;
- result.overlap[0] = a;
- result.overlap[1] = result.overlap[0];
- result.type = Result::isPoint;
- }
- else
- {
- result.numIntersections = 0;
- result.overlap[0] = (Real)0;
- result.overlap[1] = (Real)0;
- result.type = Result::isEmpty;
- }
- }
- else // is negative-infinite
- {
- if (finite[0] < a)
- {
- result.overlap[0] = finite[0];
- result.overlap[1] = std::min(finite[1], a);
- if (result.overlap[0] < result.overlap[1])
- {
- result.numIntersections = 2;
- result.type = Result::isFinite;
- }
- else
- {
- result.numIntersections = 1;
- result.type = Result::isPoint;
- }
- }
- else if (finite[0] == a)
- {
- result.numIntersections = 1;
- result.overlap[0] = a;
- result.overlap[1] = result.overlap[0];
- result.type = Result::isPoint;
- }
- else
- {
- result.numIntersections = 0;
- result.overlap[0] = (Real)0;
- result.overlap[1] = (Real)0;
- result.type = Result::isEmpty;
- }
- }
- result.intersect = (result.numIntersections > 0);
- return result;
- }
- Result operator()(Real const& a0, bool isPositiveInfinite0,
- Real const& a1, bool isPositiveInfinite1)
- {
- Result result;
- if (isPositiveInfinite0)
- {
- if (isPositiveInfinite1)
- {
- // overlap[1] is +infinity, but set it to +1 because Real
- // might not have a representation for +infinity. The
- // type indicates the interval is positive-infinite, so
- // the +1 is a reminder that overlap[1] is +infinity.
- result.numIntersections = 1;
- result.overlap[0] = std::max(a0, a1);
- result.overlap[1] = (Real)+1;
- result.type = Result::isPositiveInfinite;
- }
- else // interval1 is negative-infinite
- {
- if (a0 > a1)
- {
- result.numIntersections = 0;
- result.overlap[0] = (Real)0;
- result.overlap[1] = (Real)0;
- result.type = Result::isEmpty;
- }
- else if (a0 < a1)
- {
- result.numIntersections = 2;
- result.overlap[0] = a0;
- result.overlap[1] = a1;
- result.type = Result::isFinite;
- }
- else // a0 == a1
- {
- result.numIntersections = 1;
- result.overlap[0] = a0;
- result.overlap[1] = result.overlap[0];
- result.type = Result::isPoint;
- }
- }
- }
- else // interval0 is negative-infinite
- {
- if (isPositiveInfinite1)
- {
- if (a0 < a1)
- {
- result.numIntersections = 0;
- result.overlap[0] = (Real)0;
- result.overlap[1] = (Real)0;
- result.type = Result::isEmpty;
- }
- else if (a0 > a1)
- {
- result.numIntersections = 2;
- result.overlap[0] = a1;
- result.overlap[1] = a0;
- result.type = Result::isFinite;
- }
- else
- {
- result.numIntersections = 1;
- result.overlap[0] = a1;
- result.overlap[1] = result.overlap[0];
- result.type = Result::isPoint;
- }
- result.intersect = (a0 >= a1);
- }
- else // interval1 is negative-infinite
- {
- // overlap[0] is -infinity, but set it to -1 because Real
- // might not have a representation for -infinity. The
- // type indicates the interval is negative-infinite, so
- // the -1 is a reminder that overlap[0] is -infinity.
- result.numIntersections = 1;
- result.overlap[0] = (Real)-1;
- result.overlap[1] = std::min(a0, a1);
- result.type = Result::isNegativeInfinite;
- }
- }
- result.intersect = (result.numIntersections > 0);
- return result;
- }
- // Dynamic query. Current time is 0, maxTime > 0 is required.
- Result operator()(Real maxTime, std::array<Real, 2> const& interval0,
- Real speed0, std::array<Real, 2> const& interval1, Real speed1)
- {
- Result result;
- result.type = Result::isDynamicQuery;
- if (interval0[1] < interval1[0])
- {
- // interval0 initially to the left of interval1.
- Real diffSpeed = speed0 - speed1;
- if (diffSpeed > (Real)0)
- {
- // The intervals must move towards each other. 'intersect'
- // is true when the intervals will intersect by maxTime.
- Real diffPos = interval1[0] - interval0[1];
- Real invDiffSpeed = (Real)1 / diffSpeed;
- result.intersect = (diffPos <= maxTime * diffSpeed);
- result.numIntersections = 1;
- result.firstTime = diffPos * invDiffSpeed;
- result.lastTime = (interval1[1] - interval0[0]) * invDiffSpeed;
- result.overlap[0] = interval0[0] + result.firstTime * speed0;
- result.overlap[1] = result.overlap[0];
- return result;
- }
- }
- else if (interval0[0] > interval1[1])
- {
- // interval0 initially to the right of interval1.
- Real diffSpeed = speed1 - speed0;
- if (diffSpeed > (Real)0)
- {
- // The intervals must move towards each other. 'intersect'
- // is true when the intervals will intersect by maxTime.
- Real diffPos = interval0[0] - interval1[1];
- Real invDiffSpeed = (Real)1 / diffSpeed;
- result.intersect = (diffPos <= maxTime * diffSpeed);
- result.numIntersections = 1;
- result.firstTime = diffPos * invDiffSpeed;
- result.lastTime = (interval0[1] - interval1[0]) * invDiffSpeed;
- result.overlap[0] = interval1[1] + result.firstTime * speed1;
- result.overlap[1] = result.overlap[0];
- return result;
- }
- }
- else
- {
- // The intervals are initially intersecting.
- result.intersect = true;
- result.firstTime = (Real)0;
- if (speed1 > speed0)
- {
- result.lastTime = (interval0[1] - interval1[0]) / (speed1 - speed0);
- }
- else if (speed1 < speed0)
- {
- result.lastTime = (interval1[1] - interval0[0]) / (speed0 - speed1);
- }
- else
- {
- result.lastTime = std::numeric_limits<Real>::max();
- }
- if (interval0[1] > interval1[0])
- {
- if (interval0[0] < interval1[1])
- {
- result.numIntersections = 2;
- result.overlap[0] = (interval0[0] < interval1[0] ? interval1[0] : interval0[0]);
- result.overlap[1] = (interval0[1] > interval1[1] ? interval1[1] : interval0[1]);
- }
- else // interval0[0] == interval1[1]
- {
- result.numIntersections = 1;
- result.overlap[0] = interval0[0];
- result.overlap[1] = result.overlap[0];
- }
- }
- else // interval0[1] == interval1[0]
- {
- result.numIntersections = 1;
- result.overlap[0] = interval0[1];
- result.overlap[1] = result.overlap[0];
- }
- return result;
- }
- result.intersect = false;
- result.numIntersections = 0;
- result.overlap[0] = (Real)0;
- result.overlap[1] = (Real)0;
- result.firstTime = (Real)0;
- result.lastTime = (Real)0;
- return result;
- }
- };
- // Template aliases for convenience.
- template <typename Real>
- using TIIntervalInterval = TIQuery<Real, std::array<Real, 2>, std::array<Real, 2>>;
- template <typename Real>
- using FIIntervalInterval = FIQuery<Real, std::array<Real, 2>, std::array<Real, 2>>;
- }
|