123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/FIQuery.h>
- #include <Mathematics/TIQuery.h>
- #include <Mathematics/Hypersphere.h>
- #include <Mathematics/Vector2.h>
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, Circle2<Real>, Circle2<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- };
- Result operator()(Circle2<Real> const& circle0, Circle2<Real> const& circle1)
- {
- Result result;
- Vector2<Real> diff = circle0.center - circle1.center;
- result.intersect = (Length(diff) <= circle0.radius + circle1.radius);
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, Circle2<Real>, Circle2<Real>>
- {
- public:
- struct Result
- {
- bool intersect;
- // The number of intersections is 0, 1, 2 or maxInt =
- // std::numeric_limits<int>::max(). When 1, the circles are
- // tangent and intersect in a single point. When 2, circles have
- // two transverse intersection points. When maxInt, the circles
- // are the same.
- int numIntersections;
- // Valid only when numIntersections = 1 or 2.
- Vector2<Real> point[2];
- // Valid only when numIntersections = maxInt.
- Circle2<Real> circle;
- };
- Result operator()(Circle2<Real> const& circle0, Circle2<Real> const& circle1)
- {
- // The two circles are |X-C0| = R0 and |X-C1| = R1. Define
- // U = C1 - C0 and V = Perp(U) where Perp(x,y) = (y,-x). Note
- // that Dot(U,V) = 0 and |V|^2 = |U|^2. The intersection points X
- // can be written in the form X = C0+s*U+t*V and
- // X = C1+(s-1)*U+t*V. Squaring the circle equations and
- // substituting these formulas into them yields
- // R0^2 = (s^2 + t^2)*|U|^2
- // R1^2 = ((s-1)^2 + t^2)*|U|^2.
- // Subtracting and solving for s yields
- // s = ((R0^2-R1^2)/|U|^2 + 1)/2
- // Then replace in the first equation and solve for t^2
- // t^2 = (R0^2/|U|^2) - s^2.
- // In order for there to be solutions, the right-hand side must be
- // nonnegative. Some algebra leads to the condition for existence
- // of solutions,
- // (|U|^2 - (R0+R1)^2)*(|U|^2 - (R0-R1)^2) <= 0.
- // This reduces to
- // |R0-R1| <= |U| <= |R0+R1|.
- // If |U| = |R0-R1|, then the circles are side-by-side and just
- // tangent. If |U| = |R0+R1|, then the circles are nested and
- // just tangent. If |R0-R1| < |U| < |R0+R1|, then the two circles
- // to intersect in two points.
- Result result;
- Vector2<Real> U = circle1.center - circle0.center;
- Real USqrLen = Dot(U, U);
- Real R0 = circle0.radius, R1 = circle1.radius;
- Real R0mR1 = R0 - R1;
- if (USqrLen == (Real)0 && R0mR1 == (Real)0)
- {
- // Circles are the same.
- result.intersect = true;
- result.numIntersections = std::numeric_limits<int>::max();
- result.circle = circle0;
- return result;
- }
- Real R0mR1Sqr = R0mR1 * R0mR1;
- if (USqrLen < R0mR1Sqr)
- {
- // The circles do not intersect.
- result.intersect = false;
- result.numIntersections = 0;
- return result;
- }
- Real R0pR1 = R0 + R1;
- Real R0pR1Sqr = R0pR1 * R0pR1;
- if (USqrLen > R0pR1Sqr)
- {
- // The circles do not intersect.
- result.intersect = false;
- result.numIntersections = 0;
- return result;
- }
- if (USqrLen < R0pR1Sqr)
- {
- if (R0mR1Sqr < USqrLen)
- {
- Real invUSqrLen = (Real)1 / USqrLen;
- Real s = (Real)0.5 * ((R0 * R0 - R1 * R1) * invUSqrLen + (Real)1);
- Vector2<Real> tmp = circle0.center + s * U;
- // In theory, discr is nonnegative. However, numerical round-off
- // errors can make it slightly negative. Clamp it to zero.
- Real discr = R0 * R0 * invUSqrLen - s * s;
- if (discr < (Real)0)
- {
- discr = (Real)0;
- }
- Real t = std::sqrt(discr);
- Vector2<Real> V{ U[1], -U[0] };
- result.point[0] = tmp - t * V;
- result.point[1] = tmp + t * V;
- result.numIntersections = (t > (Real)0 ? 2 : 1);
- }
- else
- {
- // |U| = |R0-R1|, circles are tangent.
- result.numIntersections = 1;
- result.point[0] = circle0.center + (R0 / R0mR1) * U;
- }
- }
- else
- {
- // |U| = |R0+R1|, circles are tangent.
- result.numIntersections = 1;
- result.point[0] = circle0.center + (R0 / R0pR1) * U;
- }
- // The circles intersect in 1 or 2 points.
- result.intersect = true;
- return result;
- }
- };
- }
|