123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/DistPointAlignedBox.h>
- #include <Mathematics/IntrRay3AlignedBox3.h>
- #include <Mathematics/Hypersphere.h>
- // The find-intersection query is based on the document
- // https://www.geometrictools.com/Documentation/IntersectionMovingSphereBox.pdf
- // and also uses the method of separating axes.
- // https://www.geometrictools.com/Documentation/MethodOfSeparatingAxes.pdf
- namespace WwiseGTE
- {
- template <typename Real>
- class TIQuery<Real, AlignedBox3<Real>, Sphere3<Real>>
- {
- public:
- // The intersection query considers the box and sphere to be solids;
- // that is, the sphere object includes the region inside the spherical
- // boundary and the box object includes the region inside the cuboid
- // boundary. If the sphere object and box object object overlap, the
- // objects intersect.
- struct Result
- {
- bool intersect;
- };
- Result operator()(AlignedBox3<Real> const& box, Sphere3<Real> const& sphere)
- {
- DCPQuery<Real, Vector3<Real>, AlignedBox3<Real>> pbQuery;
- auto pbResult = pbQuery(sphere.center, box);
- Result result;
- result.intersect = (pbResult.sqrDistance <= sphere.radius * sphere.radius);
- return result;
- }
- };
- template <typename Real>
- class FIQuery<Real, AlignedBox3<Real>, Sphere3<Real>>
- {
- public:
- // Currently, only a dynamic query is supported. A static query will
- // need to compute the intersection set of (solid) box and sphere.
- struct Result
- {
- // The cases are
- // 1. Objects initially overlapping. The contactPoint is only one
- // of infinitely many points in the overlap.
- // intersectionType = -1
- // contactTime = 0
- // contactPoint = sphere.center
- // 2. Objects initially separated but do not intersect later. The
- // contactTime and contactPoint are invalid.
- // intersectionType = 0
- // contactTime = 0
- // contactPoint = (0,0,0)
- // 3. Objects initially separated but intersect later.
- // intersectionType = +1
- // contactTime = first time T > 0
- // contactPoint = corresponding first contact
- int intersectionType;
- Real contactTime;
- Vector3<Real> contactPoint;
- // TODO: To support arbitrary precision for the contactTime,
- // return q0, q1 and q2 where contactTime = (q0 - sqrt(q1)) / q2.
- // The caller can compute contactTime to desired number of digits
- // of precision. These are valid when intersectionType is +1 but
- // are set to zero (invalid) in the other cases. Do the same for
- // the contactPoint.
- };
- Result operator()(AlignedBox3<Real> const& box, Vector3<Real> const& boxVelocity,
- Sphere3<Real> const& sphere, Vector3<Real> const& sphereVelocity)
- {
- Result result = { 0, (Real)0, { (Real)0, (Real)0, (Real)0 } };
- // Translate the sphere and box so that the box center becomes
- // the origin. Compute the velocity of the sphere relative to
- // the box.
- Vector3<Real> boxCenter = (box.max + box.min) * (Real)0.5;
- Vector3<Real> extent = (box.max - box.min) * (Real)0.5;
- Vector3<Real> C = sphere.center - boxCenter;
- Vector3<Real> V = sphereVelocity - boxVelocity;
- // Test for no-intersection that leads to an early exit. The test
- // is fast, using the method of separating axes.
- AlignedBox3<Real> superBox;
- for (int i = 0; i < 3; ++i)
- {
- superBox.max[i] = extent[i] + sphere.radius;
- superBox.min[i] = -superBox.max[i];
- }
- TIQuery<Real, Ray3<Real>, AlignedBox3<Real>> rbQuery;
- auto rbResult = rbQuery(Ray3<Real>(C, V), superBox);
- if (!rbResult.intersect)
- {
- return result;
- }
- // Change signs on components, if necessary, to transform C to the
- // first quadrant. Adjust the velocity accordingly.
- Real sign[3];
- for (int i = 0; i < 3; ++i)
- {
- if (C[i] >= (Real)0)
- {
- sign[i] = (Real)1;
- }
- else
- {
- C[i] = -C[i];
- V[i] = -V[i];
- sign[i] = (Real)-1;
- }
- }
- DoQuery(extent, C, sphere.radius, V, result);
- if (result.intersectionType != 0)
- {
- // Translate back to the original coordinate system.
- for (int i = 0; i < 3; ++i)
- {
- if (sign[i] < (Real)0)
- {
- result.contactPoint[i] = -result.contactPoint[i];
- }
- }
- result.contactPoint += boxCenter;
- }
- return result;
- }
- protected:
- // The query assumes the box is axis-aligned with center at the
- // origin. Callers need to convert the results back to the original
- // coordinate system of the query.
- void DoQuery(Vector3<Real> const& K, Vector3<Real> const& C,
- Real radius, Vector3<Real> const& V, Result& result)
- {
- Vector3<Real> delta = C - K;
- if (delta[2] <= radius)
- {
- if (delta[1] <= radius)
- {
- if (delta[0] <= radius)
- {
- if (delta[2] <= (Real)0)
- {
- if (delta[1] <= (Real)0)
- {
- if (delta[0] <= (Real)0)
- {
- InteriorOverlap(C, result);
- }
- else
- {
- // x-face
- FaceOverlap(0, 1, 2, K, C, radius, delta, result);
- }
- }
- else
- {
- if (delta[0] <= (Real)0)
- {
- // y-face
- FaceOverlap(1, 2, 0, K, C, radius, delta, result);
- }
- else
- {
- // xy-edge
- if (delta[0] * delta[0] + delta[1] * delta[1] <= radius * radius)
- {
- EdgeOverlap(0, 1, 2, K, C, radius, delta, result);
- }
- else
- {
- EdgeSeparated(0, 1, 2, K, C, radius, delta, V, result);
- }
- }
- }
- }
- else
- {
- if (delta[1] <= (Real)0)
- {
- if (delta[0] <= (Real)0)
- {
- // z-face
- FaceOverlap(2, 0, 1, K, C, radius, delta, result);
- }
- else
- {
- // xz-edge
- if (delta[0] * delta[0] + delta[2] * delta[2] <= radius * radius)
- {
- EdgeOverlap(2, 0, 1, K, C, radius, delta, result);
- }
- else
- {
- EdgeSeparated(2, 0, 1, K, C, radius, delta, V, result);
- }
- }
- }
- else
- {
- if (delta[0] <= (Real)0)
- {
- // yz-edge
- if (delta[1] * delta[1] + delta[2] * delta[2] <= radius * radius)
- {
- EdgeOverlap(1, 2, 0, K, C, radius, delta, result);
- }
- else
- {
- EdgeSeparated(1, 2, 0, K, C, radius, delta, V, result);
- }
- }
- else
- {
- // xyz-vertex
- if (Dot(delta, delta) <= radius * radius)
- {
- VertexOverlap(K, radius, delta, result);
- }
- else
- {
- VertexSeparated(K, radius, delta, V, result);
- }
- }
- }
- }
- }
- else
- {
- // x-face
- FaceUnbounded(0, 1, 2, K, C, radius, delta, V, result);
- }
- }
- else
- {
- if (delta[0] <= radius)
- {
- // y-face
- FaceUnbounded(1, 2, 0, K, C, radius, delta, V, result);
- }
- else
- {
- // xy-edge
- EdgeUnbounded(0, 1, 2, K, C, radius, delta, V, result);
- }
- }
- }
- else
- {
- if (delta[1] <= radius)
- {
- if (delta[0] <= radius)
- {
- // z-face
- FaceUnbounded(2, 0, 1, K, C, radius, delta, V, result);
- }
- else
- {
- // xz-edge
- EdgeUnbounded(2, 0, 1, K, C, radius, delta, V, result);
- }
- }
- else
- {
- if (delta[0] <= radius)
- {
- // yz-edge
- EdgeUnbounded(1, 2, 0, K, C, radius, delta, V, result);
- }
- else
- {
- // xyz-vertex
- VertexUnbounded(K, C, radius, delta, V, result);
- }
- }
- }
- }
- private:
- void InteriorOverlap(Vector3<Real> const& C, Result& result)
- {
- result.intersectionType = -1;
- result.contactTime = (Real)0;
- result.contactPoint = C;
- }
- void VertexOverlap(Vector3<Real> const& K, Real radius,
- Vector3<Real> const& delta, Result& result)
- {
- result.intersectionType = (Dot(delta, delta) < radius * radius ? -1 : 1);
- result.contactTime = (Real)0;
- result.contactPoint = K;
- }
- void EdgeOverlap(int i0, int i1, int i2, Vector3<Real> const& K,
- Vector3<Real> const& C, Real radius, Vector3<Real> const& delta,
- Result& result)
- {
- result.intersectionType = (delta[i0] * delta[i0] + delta[i1] * delta[i1] < radius * radius ? -1 : 1);
- result.contactTime = (Real)0;
- result.contactPoint[i0] = K[i0];
- result.contactPoint[i1] = K[i1];
- result.contactPoint[i2] = C[i2];
- }
- void FaceOverlap(int i0, int i1, int i2, Vector3<Real> const& K,
- Vector3<Real> const& C, Real radius, Vector3<Real> const& delta,
- Result& result)
- {
- result.intersectionType = (delta[i0] < radius ? -1 : 1);
- result.contactTime = (Real)0;
- result.contactPoint[i0] = K[i0];
- result.contactPoint[i1] = C[i1];
- result.contactPoint[i2] = C[i2];
- }
- void VertexSeparated(Vector3<Real> const& K, Real radius,
- Vector3<Real> const& delta, Vector3<Real> const& V, Result& result)
- {
- if (V[0] < (Real)0 || V[1] < (Real)0 || V[2] < (Real)0)
- {
- DoQueryRayRoundedVertex(K, radius, delta, V, result);
- }
- }
- void EdgeSeparated(int i0, int i1, int i2, Vector3<Real> const& K,
- Vector3<Real> const& C, Real radius, Vector3<Real> const& delta,
- Vector3<Real> const& V, Result& result)
- {
- if (V[i0] < (Real)0 || V[i1] < (Real)0)
- {
- DoQueryRayRoundedEdge(i0, i1, i2, K, C, radius, delta, V, result);
- }
- }
- void VertexUnbounded(Vector3<Real> const& K, Vector3<Real> const& C, Real radius,
- Vector3<Real> const& delta, Vector3<Real> const& V, Result& result)
- {
- if (V[0] < (Real)0 && V[1] < (Real)0 && V[2] < (Real)0)
- {
- // Determine the face of the rounded box that is intersected
- // by the ray C+T*V.
- Real T = (radius - delta[0]) / V[0];
- int j0 = 0;
- Real temp = (radius - delta[1]) / V[1];
- if (temp > T)
- {
- T = temp;
- j0 = 1;
- }
- temp = (radius - delta[2]) / V[2];
- if (temp > T)
- {
- T = temp;
- j0 = 2;
- }
- // The j0-rounded face is the candidate for intersection.
- int j1 = (j0 + 1) % 3;
- int j2 = (j1 + 1) % 3;
- DoQueryRayRoundedFace(j0, j1, j2, K, C, radius, delta, V, result);
- }
- }
- void EdgeUnbounded(int i0, int i1, int /* i2 */, Vector3<Real> const& K,
- Vector3<Real> const& C, Real radius, Vector3<Real> const& delta,
- Vector3<Real> const& V, Result& result)
- {
- if (V[i0] < (Real)0 && V[i1] < (Real)0)
- {
- // Determine the face of the rounded box that is intersected
- // by the ray C+T*V.
- Real T = (radius - delta[i0]) / V[i0];
- int j0 = i0;
- Real temp = (radius - delta[i1]) / V[i1];
- if (temp > T)
- {
- T = temp;
- j0 = i1;
- }
- // The j0-rounded face is the candidate for intersection.
- int j1 = (j0 + 1) % 3;
- int j2 = (j1 + 1) % 3;
- DoQueryRayRoundedFace(j0, j1, j2, K, C, radius, delta, V, result);
- }
- }
- void FaceUnbounded(int i0, int i1, int i2, Vector3<Real> const& K,
- Vector3<Real> const& C, Real radius, Vector3<Real> const& delta,
- Vector3<Real> const& V, Result& result)
- {
- if (V[i0] < (Real)0)
- {
- DoQueryRayRoundedFace(i0, i1, i2, K, C, radius, delta, V, result);
- }
- }
- void DoQueryRayRoundedVertex(Vector3<Real> const& K, Real radius,
- Vector3<Real> const& delta, Vector3<Real> const& V, Result& result)
- {
- Real a1 = Dot(V, delta);
- if (a1 < (Real)0)
- {
- // The caller must ensure that a0 > 0 and a2 > 0.
- Real a0 = Dot(delta, delta) - radius * radius;
- Real a2 = Dot(V, V);
- Real adiscr = a1 * a1 - a2 * a0;
- if (adiscr >= (Real)0)
- {
- // The ray intersects the rounded vertex, so the sphere-box
- // contact point is the vertex.
- result.intersectionType = 1;
- result.contactTime = -(a1 + std::sqrt(adiscr)) / a2;
- result.contactPoint = K;
- }
- }
- }
- void DoQueryRayRoundedEdge(int i0, int i1, int i2, Vector3<Real> const& K,
- Vector3<Real> const& C, Real radius, Vector3<Real> const& delta,
- Vector3<Real> const& V, Result& result)
- {
- Real b1 = V[i0] * delta[i0] + V[i1] * delta[i1];
- if (b1 < (Real)0)
- {
- // The caller must ensure that b0 > 0 and b2 > 0.
- Real b0 = delta[i0] * delta[i0] + delta[i1] * delta[i1] - radius * radius;
- Real b2 = V[i0] * V[i0] + V[i1] * V[i1];
- Real bdiscr = b1 * b1 - b2 * b0;
- if (bdiscr >= (Real)0)
- {
- Real T = -(b1 + std::sqrt(bdiscr)) / b2;
- Real p2 = C[i2] + T * V[i2];
- if (-K[i2] <= p2)
- {
- if (p2 <= K[i2])
- {
- // The ray intersects the finite cylinder of the
- // rounded edge, so the sphere-box contact point
- // is on the corresponding box edge.
- result.intersectionType = 1;
- result.contactTime = T;
- result.contactPoint[i0] = K[i0];
- result.contactPoint[i1] = K[i1];
- result.contactPoint[i2] = p2;
- }
- else
- {
- // The ray intersects the infinite cylinder but
- // not the finite cylinder of the rounded edge.
- // It is possible the ray intersects the rounded
- // vertex for K.
- DoQueryRayRoundedVertex(K, radius, delta, V, result);
- }
- }
- else
- {
- // The ray intersects the infinite cylinder but
- // not the finite cylinder of the rounded edge.
- // It is possible the ray intersects the rounded
- // vertex for otherK.
- Vector3<Real> otherK, otherDelta;
- otherK[i0] = K[i0];
- otherK[i1] = K[i1];
- otherK[i2] = -K[i2];
- otherDelta[i0] = C[i0] - otherK[i0];
- otherDelta[i1] = C[i1] - otherK[i1];
- otherDelta[i2] = C[i2] - otherK[i2];
- DoQueryRayRoundedVertex(otherK, radius, otherDelta, V, result);
- }
- }
- }
- }
- void DoQueryRayRoundedFace(int i0, int i1, int i2, Vector3<Real> const& K,
- Vector3<Real> const& C, Real radius, Vector3<Real> const& delta,
- Vector3<Real> const& V, Result& result)
- {
- Vector3<Real> otherK, otherDelta;
- Real T = (radius - delta[i0]) / V[i0];
- Real p1 = C[i1] + T * V[i1];
- Real p2 = C[i2] + T * V[i2];
- if (p1 < -K[i1])
- {
- // The ray potentially intersects the rounded (i0,i1)-edge
- // whose top-most vertex is otherK.
- otherK[i0] = K[i0];
- otherK[i1] = -K[i1];
- otherK[i2] = K[i2];
- otherDelta[i0] = C[i0] - otherK[i0];
- otherDelta[i1] = C[i1] - otherK[i1];
- otherDelta[i2] = C[i2] - otherK[i2];
- DoQueryRayRoundedEdge(i0, i1, i2, otherK, C, radius, otherDelta, V, result);
- if (result.intersectionType == 0)
- {
- if (p2 < -K[i2])
- {
- // The ray potentially intersects the rounded
- // (i2,i0)-edge whose right-most vertex is otherK.
- otherK[i0] = K[i0];
- otherK[i1] = K[i1];
- otherK[i2] = -K[i2];
- otherDelta[i0] = C[i0] - otherK[i0];
- otherDelta[i1] = C[i1] - otherK[i1];
- otherDelta[i2] = C[i2] - otherK[i2];
- DoQueryRayRoundedEdge(i2, i0, i1, otherK, C, radius, otherDelta, V, result);
- }
- else if (p2 > K[i2])
- {
- // The ray potentially intersects the rounded
- // (i2,i0)-edge whose right-most vertex is K.
- DoQueryRayRoundedEdge(i2, i0, i1, K, C, radius, delta, V, result);
- }
- }
- }
- else if (p1 <= K[i1])
- {
- if (p2 < -K[i2])
- {
- // The ray potentially intersects the rounded
- // (i2,i0)-edge whose right-most vertex is otherK.
- otherK[i0] = K[i0];
- otherK[i1] = K[i1];
- otherK[i2] = -K[i2];
- otherDelta[i0] = C[i0] - otherK[i0];
- otherDelta[i1] = C[i1] - otherK[i1];
- otherDelta[i2] = C[i2] - otherK[i2];
- DoQueryRayRoundedEdge(i2, i0, i1, otherK, C, radius, otherDelta, V, result);
- }
- else if (p2 <= K[i2])
- {
- // The ray intersects the i0-face of the rounded box, so
- // the sphere-box contact point is on the corresponding
- // box face.
- result.intersectionType = 1;
- result.contactTime = T;
- result.contactPoint[i0] = K[i0];
- result.contactPoint[i1] = p1;
- result.contactPoint[i2] = p2;
- }
- else // p2 > K[i2]
- {
- // The ray potentially intersects the rounded
- // (i2,i0)-edge whose right-most vertex is K.
- DoQueryRayRoundedEdge(i2, i0, i1, K, C, radius, delta, V, result);
- }
- }
- else // p1 > K[i1]
- {
- // The ray potentially intersects the rounded (i0,i1)-edge
- // whose top-most vertex is K.
- DoQueryRayRoundedEdge(i0, i1, i2, K, C, radius, delta, V, result);
- if (result.intersectionType == 0)
- {
- if (p2 < -K[i2])
- {
- // The ray potentially intersects the rounded
- // (i2,i0)-edge whose right-most vertex is otherK.
- otherK[i0] = K[i0];
- otherK[i1] = K[i1];
- otherK[i2] = -K[i2];
- otherDelta[i0] = C[i0] - otherK[i0];
- otherDelta[i1] = C[i1] - otherK[i1];
- otherDelta[i2] = C[i2] - otherK[i2];
- DoQueryRayRoundedEdge(i2, i0, i1, otherK, C, radius, otherDelta, V, result);
- }
- else if (p2 > K[i2])
- {
- // The ray potentially intersects the rounded
- // (i2,i0)-edge whose right-most vertex is K.
- DoQueryRayRoundedEdge(i2, i0, i1, K, C, radius, delta, V, result);
- }
- }
- }
- }
- };
- }
|