123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Logger.h>
- #include <array>
- // The interpolator is for uniformly spaced(x,y z)-values. The input samples
- // must be stored in lexicographical order to represent f(x,y,z); that is,
- // F[c + xBound*(r + yBound*s)] corresponds to f(x,y,z), where c is the index
- // corresponding to x, r is the index corresponding to y, and s is the index
- // corresponding to z. Exact interpolation is achieved by setting catmullRom
- // to 'true', giving you the Catmull-Rom blending matrix. If a smooth
- // interpolation is desired, set catmullRom to 'false' to obtain B-spline
- // blending.
- namespace WwiseGTE
- {
- template <typename Real>
- class IntpTricubic3
- {
- public:
- // Construction.
- IntpTricubic3(int xBound, int yBound, int zBound, Real xMin,
- Real xSpacing, Real yMin, Real ySpacing, Real zMin, Real zSpacing,
- Real const* F, bool catmullRom)
- :
- mXBound(xBound),
- mYBound(yBound),
- mZBound(zBound),
- mQuantity(xBound * yBound * zBound),
- mXMin(xMin),
- mXSpacing(xSpacing),
- mYMin(yMin),
- mYSpacing(ySpacing),
- mZMin(zMin),
- mZSpacing(zSpacing),
- mF(F)
- {
- // At least a 4x4x4 block of data points are needed to construct
- // the tricubic interpolation.
- LogAssert(xBound >= 4 && yBound >= 4 && zBound >= 4 && F != nullptr
- && xSpacing > (Real)0 && ySpacing > (Real)0 && zSpacing > (Real)0,
- "Invalid input.");
- mXMax = mXMin + mXSpacing * static_cast<Real>(mXBound - 1);
- mInvXSpacing = (Real)1 / mXSpacing;
- mYMax = mYMin + mYSpacing * static_cast<Real>(mYBound - 1);
- mInvYSpacing = (Real)1 / mYSpacing;
- mZMax = mZMin + mZSpacing * static_cast<Real>(mZBound - 1);
- mInvZSpacing = (Real)1 / mZSpacing;
- if (catmullRom)
- {
- mBlend[0][0] = (Real)0;
- mBlend[0][1] = (Real)-0.5;
- mBlend[0][2] = (Real)1;
- mBlend[0][3] = (Real)-0.5;
- mBlend[1][0] = (Real)1;
- mBlend[1][1] = (Real)0;
- mBlend[1][2] = (Real)-2.5;
- mBlend[1][3] = (Real)1.5;
- mBlend[2][0] = (Real)0;
- mBlend[2][1] = (Real)0.5;
- mBlend[2][2] = (Real)2;
- mBlend[2][3] = (Real)-1.5;
- mBlend[3][0] = (Real)0;
- mBlend[3][1] = (Real)0;
- mBlend[3][2] = (Real)-0.5;
- mBlend[3][3] = (Real)0.5;
- }
- else
- {
- mBlend[0][0] = (Real)1 / (Real)6;
- mBlend[0][1] = (Real)-3 / (Real)6;
- mBlend[0][2] = (Real)3 / (Real)6;
- mBlend[0][3] = (Real)-1 / (Real)6;;
- mBlend[1][0] = (Real)4 / (Real)6;
- mBlend[1][1] = (Real)0 / (Real)6;
- mBlend[1][2] = (Real)-6 / (Real)6;
- mBlend[1][3] = (Real)3 / (Real)6;
- mBlend[2][0] = (Real)1 / (Real)6;
- mBlend[2][1] = (Real)3 / (Real)6;
- mBlend[2][2] = (Real)3 / (Real)6;
- mBlend[2][3] = (Real)-3 / (Real)6;
- mBlend[3][0] = (Real)0 / (Real)6;
- mBlend[3][1] = (Real)0 / (Real)6;
- mBlend[3][2] = (Real)0 / (Real)6;
- mBlend[3][3] = (Real)1 / (Real)6;
- }
- }
- // Member access.
- inline int GetXBound() const
- {
- return mXBound;
- }
- inline int GetYBound() const
- {
- return mYBound;
- }
- inline int GetZBound() const
- {
- return mZBound;
- }
- inline int GetQuantity() const
- {
- return mQuantity;
- }
- inline Real const* GetF() const
- {
- return mF;
- }
- inline Real GetXMin() const
- {
- return mXMin;
- }
- inline Real GetXMax() const
- {
- return mXMax;
- }
- inline Real GetXSpacing() const
- {
- return mXSpacing;
- }
- inline Real GetYMin() const
- {
- return mYMin;
- }
- inline Real GetYMax() const
- {
- return mYMax;
- }
- inline Real GetYSpacing() const
- {
- return mYSpacing;
- }
- inline Real GetZMin() const
- {
- return mZMin;
- }
- inline Real GetZMax() const
- {
- return mZMax;
- }
- inline Real GetZSpacing() const
- {
- return mZSpacing;
- }
- // Evaluate the function and its derivatives. The functions clamp the
- // inputs to xmin <= x <= xmax, ymin <= y <= ymax, and zmin <= z <= zmax.
- // The first operator is for function evaluation. The second operator is
- // for function or derivative evaluations. The xOrder argument is the
- // order of the x-derivative, the yOrder argument is the order of the
- // y-derivative, and the zOrder argument is the order of the z-derivative.
- // All orders are zero to get the function value itself.
- Real operator()(Real x, Real y, Real z) const
- {
- // Compute x-index and clamp to image.
- Real xIndex = (x - mXMin) * mInvXSpacing;
- int ix = static_cast<int>(xIndex);
- if (ix < 0)
- {
- ix = 0;
- }
- else if (ix >= mXBound)
- {
- ix = mXBound - 1;
- }
- // Compute y-index and clamp to image.
- Real yIndex = (y - mYMin) * mInvYSpacing;
- int iy = static_cast<int>(yIndex);
- if (iy < 0)
- {
- iy = 0;
- }
- else if (iy >= mYBound)
- {
- iy = mYBound - 1;
- }
- // Compute z-index and clamp to image.
- Real zIndex = (z - mZMin) * mInvZSpacing;
- int iz = static_cast<int>(zIndex);
- if (iz < 0)
- {
- iz = 0;
- }
- else if (iz >= mZBound)
- {
- iz = mZBound - 1;
- }
- std::array<Real, 4> U;
- U[0] = (Real)1;
- U[1] = xIndex - ix;
- U[2] = U[1] * U[1];
- U[3] = U[1] * U[2];
- std::array<Real, 4> V;
- V[0] = (Real)1;
- V[1] = yIndex - iy;
- V[2] = V[1] * V[1];
- V[3] = V[1] * V[2];
- std::array<Real, 4> W;
- W[0] = (Real)1;
- W[1] = zIndex - iz;
- W[2] = W[1] * W[1];
- W[3] = W[1] * W[2];
- // Compute P = M*U, Q = M*V, R = M*W.
- std::array<Real, 4> P, Q, R;
- for (int row = 0; row < 4; ++row)
- {
- P[row] = (Real)0;
- Q[row] = (Real)0;
- R[row] = (Real)0;
- for (int col = 0; col < 4; ++col)
- {
- P[row] += mBlend[row][col] * U[col];
- Q[row] += mBlend[row][col] * V[col];
- R[row] += mBlend[row][col] * W[col];
- }
- }
- // Compute the tensor product (M*U)(M*V)(M*W)*D where D is the 4x4x4
- // subimage containing (x,y,z).
- --ix;
- --iy;
- --iz;
- Real result = (Real)0;
- for (int slice = 0; slice < 4; ++slice)
- {
- int zClamp = iz + slice;
- if (zClamp < 0)
- {
- zClamp = 0;
- }
- else if (zClamp > mZBound - 1)
- {
- zClamp = mZBound - 1;
- }
- for (int row = 0; row < 4; ++row)
- {
- int yClamp = iy + row;
- if (yClamp < 0)
- {
- yClamp = 0;
- }
- else if (yClamp > mYBound - 1)
- {
- yClamp = mYBound - 1;
- }
- for (int col = 0; col < 4; ++col)
- {
- int xClamp = ix + col;
- if (xClamp < 0)
- {
- xClamp = 0;
- }
- else if (xClamp > mXBound - 1)
- {
- xClamp = mXBound - 1;
- }
- result += P[col] * Q[row] * R[slice] *
- mF[xClamp + mXBound * (yClamp + mYBound * zClamp)];
- }
- }
- }
- return result;
- }
- Real operator()(int xOrder, int yOrder, int zOrder, Real x, Real y, Real z) const
- {
- // Compute x-index and clamp to image.
- Real xIndex = (x - mXMin) * mInvXSpacing;
- int ix = static_cast<int>(xIndex);
- if (ix < 0)
- {
- ix = 0;
- }
- else if (ix >= mXBound)
- {
- ix = mXBound - 1;
- }
- // Compute y-index and clamp to image.
- Real yIndex = (y - mYMin) * mInvYSpacing;
- int iy = static_cast<int>(yIndex);
- if (iy < 0)
- {
- iy = 0;
- }
- else if (iy >= mYBound)
- {
- iy = mYBound - 1;
- }
- // Compute z-index and clamp to image.
- Real zIndex = (z - mZMin) * mInvZSpacing;
- int iz = static_cast<int>(zIndex);
- if (iz < 0)
- {
- iz = 0;
- }
- else if (iz >= mZBound)
- {
- iz = mZBound - 1;
- }
- std::array<Real, 4> U;
- Real dx, xMult;
- switch (xOrder)
- {
- case 0:
- dx = xIndex - ix;
- U[0] = (Real)1;
- U[1] = dx;
- U[2] = dx * U[1];
- U[3] = dx * U[2];
- xMult = (Real)1;
- break;
- case 1:
- dx = xIndex - ix;
- U[0] = (Real)0;
- U[1] = (Real)1;
- U[2] = (Real)2 * dx;
- U[3] = (Real)3 * dx * dx;
- xMult = mInvXSpacing;
- break;
- case 2:
- dx = xIndex - ix;
- U[0] = (Real)0;
- U[1] = (Real)0;
- U[2] = (Real)2;
- U[3] = (Real)6 * dx;
- xMult = mInvXSpacing * mInvXSpacing;
- break;
- case 3:
- U[0] = (Real)0;
- U[1] = (Real)0;
- U[2] = (Real)0;
- U[3] = (Real)6;
- xMult = mInvXSpacing * mInvXSpacing * mInvXSpacing;
- break;
- default:
- return (Real)0;
- }
- std::array<Real, 4> V;
- Real dy, yMult;
- switch (yOrder)
- {
- case 0:
- dy = yIndex - iy;
- V[0] = (Real)1;
- V[1] = dy;
- V[2] = dy * V[1];
- V[3] = dy * V[2];
- yMult = (Real)1;
- break;
- case 1:
- dy = yIndex - iy;
- V[0] = (Real)0;
- V[1] = (Real)1;
- V[2] = (Real)2 * dy;
- V[3] = (Real)3 * dy * dy;
- yMult = mInvYSpacing;
- break;
- case 2:
- dy = yIndex - iy;
- V[0] = (Real)0;
- V[1] = (Real)0;
- V[2] = (Real)2;
- V[3] = (Real)6 * dy;
- yMult = mInvYSpacing * mInvYSpacing;
- break;
- case 3:
- V[0] = (Real)0;
- V[1] = (Real)0;
- V[2] = (Real)0;
- V[3] = (Real)6;
- yMult = mInvYSpacing * mInvYSpacing * mInvYSpacing;
- break;
- default:
- return (Real)0;
- }
- std::array<Real, 4> W;
- Real dz, zMult;
- switch (zOrder)
- {
- case 0:
- dz = zIndex - iz;
- W[0] = (Real)1;
- W[1] = dz;
- W[2] = dz * W[1];
- W[3] = dz * W[2];
- zMult = (Real)1;
- break;
- case 1:
- dz = zIndex - iz;
- W[0] = (Real)0;
- W[1] = (Real)1;
- W[2] = (Real)2 * dz;
- W[3] = (Real)3 * dz * dz;
- zMult = mInvZSpacing;
- break;
- case 2:
- dz = zIndex - iz;
- W[0] = (Real)0;
- W[1] = (Real)0;
- W[2] = (Real)2;
- W[3] = (Real)6 * dz;
- zMult = mInvZSpacing * mInvZSpacing;
- break;
- case 3:
- W[0] = (Real)0;
- W[1] = (Real)0;
- W[2] = (Real)0;
- W[3] = (Real)6;
- zMult = mInvZSpacing * mInvZSpacing * mInvZSpacing;
- break;
- default:
- return (Real)0;
- }
- // Compute P = M*U, Q = M*V, and R = M*W.
- std::array<Real, 4> P, Q, R;
- for (int row = 0; row < 4; ++row)
- {
- P[row] = (Real)0;
- Q[row] = (Real)0;
- R[row] = (Real)0;
- for (int col = 0; col < 4; ++col)
- {
- P[row] += mBlend[row][col] * U[col];
- Q[row] += mBlend[row][col] * V[col];
- R[row] += mBlend[row][col] * W[col];
- }
- }
- // Compute the tensor product (M*U)(M*V)(M*W)*D where D is the 4x4x4
- // subimage containing (x,y,z).
- --ix;
- --iy;
- --iz;
- Real result = (Real)0;
- for (int slice = 0; slice < 4; ++slice)
- {
- int zClamp = iz + slice;
- if (zClamp < 0)
- {
- zClamp = 0;
- }
- else if (zClamp > mZBound - 1)
- {
- zClamp = mZBound - 1;
- }
- for (int row = 0; row < 4; ++row)
- {
- int yClamp = iy + row;
- if (yClamp < 0)
- {
- yClamp = 0;
- }
- else if (yClamp > mYBound - 1)
- {
- yClamp = mYBound - 1;
- }
- for (int col = 0; col < 4; ++col)
- {
- int xClamp = ix + col;
- if (xClamp < 0)
- {
- xClamp = 0;
- }
- else if (xClamp > mXBound - 1)
- {
- xClamp = mXBound - 1;
- }
- result += P[col] * Q[row] * R[slice] *
- mF[xClamp + mXBound * (yClamp + mYBound * zClamp)];
- }
- }
- }
- result *= xMult * yMult * zMult;
- return result;
- }
- private:
- int mXBound, mYBound, mZBound, mQuantity;
- Real mXMin, mXMax, mXSpacing, mInvXSpacing;
- Real mYMin, mYMax, mYSpacing, mInvYSpacing;
- Real mZMin, mZMax, mZSpacing, mInvZSpacing;
- Real const* mF;
- std::array<std::array<Real, 4>, 4> mBlend;
- };
- }
|