123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/IntpAkima1.h>
- namespace WwiseGTE
- {
- template <typename Real>
- class IntpAkimaNonuniform1 : public IntpAkima1<Real>
- {
- public:
- // Construction. The interpolator is for arbitrarily spaced x-values.
- // The input arrays must have 'quantity' elements and the X[] array
- // must store increasing values: X[i + 1] > X[i] for all i.
- IntpAkimaNonuniform1(int quantity, Real const* X, Real const* F)
- :
- IntpAkima1<Real>(quantity, F),
- mX(X)
- {
- LogAssert(X != nullptr, "Invalid input.");
- for (int j0 = 0, j1 = 1; j1 < quantity; ++j0, ++j1)
- {
- LogAssert(X[j1] > X[j0], "Invalid input.");
- }
- // Compute slopes.
- std::vector<Real> slope(quantity + 3);
- int i, ip1, ip2;
- for (i = 0, ip1 = 1, ip2 = 2; i < quantity - 1; ++i, ++ip1, ++ip2)
- {
- Real dx = X[ip1] - X[i];
- Real df = F[ip1] - F[i];
- slope[ip2] = df / dx;
- }
- slope[1] = (Real)2 * slope[2] - slope[3];
- slope[0] = (Real)2 * slope[1] - slope[2];
- slope[quantity + 1] = (Real)2 * slope[quantity] - slope[quantity - 1];
- slope[quantity + 2] = (Real)2 * slope[quantity + 1] - slope[quantity];
- // Construct derivatives.
- std::vector<Real> FDer(quantity);
- for (i = 0; i < quantity; ++i)
- {
- FDer[i] = this->ComputeDerivative(&slope[i]);
- }
- // Construct polynomials.
- for (i = 0, ip1 = 1; i < quantity - 1; ++i, ++ip1)
- {
- auto& poly = this->mPoly[i];
- Real F0 = F[i];
- Real F1 = F[ip1];
- Real FDer0 = FDer[i];
- Real FDer1 = FDer[ip1];
- Real df = F1 - F0;
- Real dx = X[ip1] - X[i];
- Real dx2 = dx * dx;
- Real dx3 = dx2 * dx;
- poly[0] = F0;
- poly[1] = FDer0;
- poly[2] = ((Real)3 * df - dx * (FDer1 + (Real)2 * FDer0)) / dx2;
- poly[3] = (dx * (FDer0 + FDer1) - (Real)2 * df) / dx3;
- }
- }
- virtual ~IntpAkimaNonuniform1() = default;
- // Member access.
- Real const* GetX() const
- {
- return mX;
- }
- virtual Real GetXMin() const override
- {
- return mX[0];
- }
- virtual Real GetXMax() const override
- {
- return mX[this->mQuantity - 1];
- }
- protected:
- virtual void Lookup(Real x, int& index, Real& dx) const override
- {
- // The caller has ensured that mXMin <= x <= mXMax.
- for (index = 0; index + 1 < this->mQuantity; ++index)
- {
- if (x < mX[index + 1])
- {
- dx = x - mX[index];
- return;
- }
- }
- --index;
- dx = x - mX[index];
- }
- Real const* mX;
- };
- }
|