123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Logger.h>
- #include <Mathematics/Math.h>
- #include <algorithm>
- #include <array>
- #include <vector>
- namespace WwiseGTE
- {
- template <typename Real>
- class IntpAkima1
- {
- protected:
- // Construction (abstract base class).
- IntpAkima1(int quantity, Real const* F)
- :
- mQuantity(quantity),
- mF(F)
- {
- // At least three data points are needed to construct the
- // estimates of the boundary derivatives.
- LogAssert(mQuantity >= 3, "Invalid input to IntpAkima1 constructor.");
- mPoly.resize(mQuantity - 1);
- }
- public:
- // Abstract base class.
- virtual ~IntpAkima1() = default;
- // Member access.
- inline int GetQuantity() const
- {
- return mQuantity;
- }
- inline Real const* GetF() const
- {
- return mF;
- }
- virtual Real GetXMin() const = 0;
- virtual Real GetXMax() const = 0;
- // Evaluate the function and its derivatives. The functions clamp the
- // inputs to xmin <= x <= xmax. The first operator is for function
- // evaluation. The second operator is for function or derivative
- // evaluations. The 'order' argument is the order of the derivative
- // or zero for the function itself.
- Real operator()(Real x) const
- {
- x = std::min(std::max(x, GetXMin()), GetXMax());
- int index;
- Real dx;
- Lookup(x, index, dx);
- return mPoly[index](dx);
- }
- Real operator()(int order, Real x) const
- {
- x = std::min(std::max(x, GetXMin()), GetXMax());
- int index;
- Real dx;
- Lookup(x, index, dx);
- return mPoly[index](order, dx);
- }
- protected:
- class Polynomial
- {
- public:
- // P(x) = c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3
- inline Real& operator[](int i)
- {
- return mCoeff[i];
- }
- Real operator()(Real x) const
- {
- return mCoeff[0] + x * (mCoeff[1] + x * (mCoeff[2] + x * mCoeff[3]));
- }
- Real operator()(int order, Real x) const
- {
- switch (order)
- {
- case 0:
- return mCoeff[0] + x * (mCoeff[1] + x * (mCoeff[2] + x * mCoeff[3]));
- case 1:
- return mCoeff[1] + x * ((Real)2 * mCoeff[2] + x * (Real)3 * mCoeff[3]);
- case 2:
- return (Real)2 * mCoeff[2] + x * (Real)6 * mCoeff[3];
- case 3:
- return (Real)6 * mCoeff[3];
- }
- return (Real)0;
- }
- private:
- std::array<Real, 4> mCoeff;
- };
- Real ComputeDerivative(Real* slope) const
- {
- if (slope[1] != slope[2])
- {
- if (slope[0] != slope[1])
- {
- if (slope[2] != slope[3])
- {
- Real ad0 = std::fabs(slope[3] - slope[2]);
- Real ad1 = std::fabs(slope[0] - slope[1]);
- return (ad0 * slope[1] + ad1 * slope[2]) / (ad0 + ad1);
- }
- else
- {
- return slope[2];
- }
- }
- else
- {
- if (slope[2] != slope[3])
- {
- return slope[1];
- }
- else
- {
- return ((Real)0.5)* (slope[1] + slope[2]);
- }
- }
- }
- else
- {
- return slope[1];
- }
- }
- virtual void Lookup(Real x, int& index, Real& dx) const = 0;
- int mQuantity;
- Real const* mF;
- std::vector<Polynomial> mPoly;
- };
- }
|