123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Matrix.h>
- #include <Mathematics/SymmetricEigensolver.h>
- // A hyperellipsoid has center K; axis directions U[0] through U[N-1], all
- // unit-length vectors; and extents e[0] through e[N-1], all positive numbers.
- // A point X = K + sum_{d=0}^{N-1} y[d]*U[d] is on the hyperellipsoid whenever
- // sum_{d=0}^{N-1} (y[d]/e[d])^2 = 1. An algebraic representation for the
- // hyperellipsoid is (X-K)^T * M * (X-K) = 1, where M is the NxN symmetric
- // matrix M = sum_{d=0}^{N-1} U[d]*U[d]^T/e[d]^2, where the superscript T
- // denotes transpose. Observe that U[i]*U[i]^T is a matrix, not a scalar dot
- // product. The hyperellipsoid is also represented by a quadratic equation
- // 0 = C + B^T*X + X^T*A*X, where C is a scalar, B is an Nx1 vector, and A is
- // an NxN symmetric matrix with positive eigenvalues. The coefficients can be
- // stored from lowest degree to highest degree,
- // C = k[0]
- // B = k[1], ..., k[N]
- // A = k[N+1], ..., k[(N+1)(N+2)/2 - 1]
- // where the A-coefficients are the upper-triangular elements of A listed in
- // row-major order. For N = 2, X = (x[0],x[1]) and
- // 0 = k[0] +
- // k[1]*x[0] + k[2]*x[1] +
- // k[3]*x[0]*x[0] + k[4]*x[0]*x[1]
- // + k[5]*x[1]*x[1]
- // For N = 3, X = (x[0],x[1],x[2]) and
- // 0 = k[0] +
- // k[1]*x[0] + k[2]*x[1] + k[3]*x[2] +
- // k[4]*x[0]*x[0] + k[5]*x[0]*x[1] + k[6]*x[0]*x[2] +
- // + k[7]*x[1]*x[1] + k[8]*x[1]*x[2] +
- // + k[9]*x[2]*x[2]
- // This equation can be factored to the form (X-K)^T * M * (X-K) = 1, where
- // K = -A^{-1}*B/2, M = A/(B^T*A^{-1}*B/4-C).
- namespace WwiseGTE
- {
- template <int N, typename Real>
- class Hyperellipsoid
- {
- public:
- // Construction and destruction. The default constructor sets the
- // center to Vector<N,Real>::Zero(), the axes to
- // Vector<N,Real>::Unit(d), and all extents to 1.
- Hyperellipsoid()
- {
- center.MakeZero();
- for (int d = 0; d < N; ++d)
- {
- axis[d].MakeUnit(d);
- extent[d] = (Real)1;
- }
- }
- Hyperellipsoid(Vector<N, Real> const& inCenter,
- std::array<Vector<N, Real>, N> const inAxis,
- Vector<N, Real> const& inExtent)
- :
- center(inCenter),
- axis(inAxis),
- extent(inExtent)
- {
- }
- // Compute M = sum_{d=0}^{N-1} U[d]*U[d]^T/e[d]^2.
- void GetM(Matrix<N, N, Real>& M) const
- {
- M.MakeZero();
- for (int d = 0; d < N; ++d)
- {
- Vector<N, Real> ratio = axis[d] / extent[d];
- M += OuterProduct<N, N, Real>(ratio, ratio);
- }
- }
- // Compute M^{-1} = sum_{d=0}^{N-1} U[d]*U[d]^T*e[d]^2.
- void GetMInverse(Matrix<N, N, Real>& MInverse) const
- {
- MInverse.MakeZero();
- for (int d = 0; d < N; ++d)
- {
- Vector<N, Real> product = axis[d] * extent[d];
- MInverse += OuterProduct<N, N, Real>(product, product);
- }
- }
- // Construct the coefficients in the quadratic equation that represents
- // the hyperellipsoid.
- void ToCoefficients(std::array<Real, (N + 1) * (N + 2) / 2> & coeff) const
- {
- int const numCoefficients = (N + 1) * (N + 2) / 2;
- Matrix<N, N, Real> A;
- Vector<N, Real> B;
- Real C;
- ToCoefficients(A, B, C);
- Convert(A, B, C, coeff);
- // Arrange for one of the coefficients of the quadratic terms
- // to be 1.
- int quadIndex = numCoefficients - 1;
- int maxIndex = quadIndex;
- Real maxValue = std::fabs(coeff[quadIndex]);
- for (int d = 2; d < N; ++d)
- {
- quadIndex -= d;
- Real absValue = std::fabs(coeff[quadIndex]);
- if (absValue > maxValue)
- {
- maxIndex = quadIndex;
- maxValue = absValue;
- }
- }
- Real invMaxValue = (Real)1 / maxValue;
- for (int i = 0; i < numCoefficients; ++i)
- {
- if (i != maxIndex)
- {
- coeff[i] *= invMaxValue;
- }
- else
- {
- coeff[i] = (Real)1;
- }
- }
- }
- void ToCoefficients(Matrix<N, N, Real>& A, Vector<N, Real>& B, Real& C) const
- {
- GetM(A);
- Vector<N, Real> product = A * center;
- B = (Real)-2 * product;
- C = Dot(center, product) - (Real)1;
- }
- // Construct C, U[i], and e[i] from the equation. The return value is
- // 'true' if and only if the input coefficients represent a
- // hyperellipsoid. If the function returns 'false', the hyperellipsoid
- // data members are undefined.
- bool FromCoefficients(std::array<Real, (N + 1) * (N + 2) / 2> const& coeff)
- {
- Matrix<N, N, Real> A;
- Vector<N, Real> B;
- Real C;
- Convert(coeff, A, B, C);
- return FromCoefficients(A, B, C);
- }
- bool FromCoefficients(Matrix<N, N, Real> const& A, Vector<N, Real> const& B, Real C)
- {
- // Compute the center K = -A^{-1}*B/2.
- bool invertible;
- Matrix<N, N, Real> invA = Inverse(A, &invertible);
- if (!invertible)
- {
- return false;
- }
- center = ((Real)-0.5) * (invA * B);
- // Compute B^T*A^{-1}*B/4 - C = K^T*A*K - C = -K^T*B/2 - C.
- Real rightSide = (Real)-0.5 * Dot(center, B) - C;
- if (rightSide == (Real)0)
- {
- return false;
- }
- // Compute M = A/(K^T*A*K - C).
- Real invRightSide = (Real)1 / rightSide;
- Matrix<N, N, Real> M = invRightSide * A;
- // Factor into M = R*D*R^T. M is symmetric, so it does not matter whether
- // the matrix is stored in row-major or column-major order; they are
- // equivalent. The output R, however, is in row-major order.
- SymmetricEigensolver<Real> es(N, 32);
- Matrix<N, N, Real> rotation;
- std::array<Real, N> diagonal;
- es.Solve(&M[0], +1); // diagonal[i] are nondecreasing
- es.GetEigenvalues(&diagonal[0]);
- es.GetEigenvectors(&rotation[0]);
- if (es.GetEigenvectorMatrixType() == 0)
- {
- auto negLast = -rotation.GetCol(N - 1);
- rotation.SetCol(N - 1, negLast);
- }
- for (int d = 0; d < N; ++d)
- {
- if (diagonal[d] <= (Real)0)
- {
- return false;
- }
- extent[d] = (Real)1 / std::sqrt(diagonal[d]);
- axis[d] = rotation.GetCol(d);
- }
- return true;
- }
- // Public member access.
- Vector<N, Real> center;
- std::array<Vector<N, Real>, N> axis;
- Vector<N, Real> extent;
- private:
- static void Convert(std::array<Real, (N + 1) * (N + 2) / 2> const& coeff,
- Matrix<N, N, Real>& A, Vector<N, Real>& B, Real& C)
- {
- int i = 0;
- C = coeff[i++];
- for (int j = 0; j < N; ++j)
- {
- B[j] = coeff[i++];
- }
- for (int r = 0; r < N; ++r)
- {
- for (int c = 0; c < r; ++c)
- {
- A(r, c) = A(c, r);
- }
- A(r, r) = coeff[i++];
- for (int c = r + 1; c < N; ++c)
- {
- A(r, c) = coeff[i++] * (Real)0.5;
- }
- }
- }
- static void Convert(Matrix<N, N, Real> const& A, Vector<N, Real> const& B,
- Real C, std::array<Real, (N + 1) * (N + 2) / 2> & coeff)
- {
- int i = 0;
- coeff[i++] = C;
- for (int j = 0; j < N; ++j)
- {
- coeff[i++] = B[j];
- }
- for (int r = 0; r < N; ++r)
- {
- coeff[i++] = A(r, r);
- for (int c = r + 1; c < N; ++c)
- {
- coeff[i++] = A(r, c) * (Real)2;
- }
- }
- }
- public:
- // Comparisons to support sorted containers.
- bool operator==(Hyperellipsoid const& hyperellipsoid) const
- {
- return center == hyperellipsoid.center && axis == hyperellipsoid.axis
- && extent == hyperellipsoid.extent;
- }
- bool operator!=(Hyperellipsoid const& hyperellipsoid) const
- {
- return !operator==(hyperellipsoid);
- }
- bool operator< (Hyperellipsoid const& hyperellipsoid) const
- {
- if (center < hyperellipsoid.center)
- {
- return true;
- }
- if (center > hyperellipsoid.center)
- {
- return false;
- }
- if (axis < hyperellipsoid.axis)
- {
- return true;
- }
- if (axis > hyperellipsoid.axis)
- {
- return false;
- }
- return extent < hyperellipsoid.extent;
- }
- bool operator<=(Hyperellipsoid const& hyperellipsoid) const
- {
- return !hyperellipsoid.operator<(*this);
- }
- bool operator> (Hyperellipsoid const& hyperellipsoid) const
- {
- return hyperellipsoid.operator<(*this);
- }
- bool operator>=(Hyperellipsoid const& hyperellipsoid) const
- {
- return !operator<(hyperellipsoid);
- }
- };
- // Template aliases for convenience.
- template <typename Real>
- using Ellipse2 = Hyperellipsoid<2, Real>;
- template <typename Real>
- using Ellipsoid3 = Hyperellipsoid<3, Real>;
- }
|