123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/CholeskyDecomposition.h>
- #include <functional>
- // Let F(p) = (F_{0}(p), F_{1}(p), ..., F_{n-1}(p)) be a vector-valued
- // function of the parameters p = (p_{0}, p_{1}, ..., p_{m-1}). The
- // nonlinear least-squares problem is to minimize the real-valued error
- // function E(p) = |F(p)|^2, which is the squared length of F(p).
- //
- // Let J = dF/dp = [dF_{r}/dp_{c}] denote the Jacobian matrix, which is the
- // matrix of first-order partial derivatives of F. The matrix has n rows and
- // m columns, and the indexing (r,c) refers to row r and column c. A
- // first-order approximation is F(p + d) = F(p) + J(p)d, where d is an m-by-1
- // vector with small length. Consequently, an approximation to E is E(p + d)
- // = |F(p + d)|^2 = |F(p) + J(p)d|^2. The goal is to choose d to minimize
- // |F(p) + J(p)d|^2 and, hopefully, with E(p + d) < E(p). Choosing an initial
- // p_{0}, the hope is that the algorithm generates a sequence p_{i} for which
- // E(p_{i+1}) < E(p_{i}) and, in the limit, E(p_{j}) approaches the global
- // minimum of E. The algorithm is referred to as Gauss-Newton iteration. If
- // E does not decrease for a step of the algorithm, one can modify the
- // algorithm to the Levenberg-Marquardt iteration. See
- // GteLevenbergMarquardtMinimizer.h for a description and an implementation.
- //
- // For a single Gauss-Newton iteration, we need to choose d to minimize
- // |F(p) + J(p)d|^2 where p is fixed. This is a linear least squares problem
- // which can be formulated using the normal equations
- // (J^T(p)*J(p))*d = -J^T(p)*F(p). The matrix J^T*J is positive semidefinite.
- // If it is invertible, then d = -(J^T(p)*J(p))^{-1}*F(p). If it is not
- // invertible, some other algorithm must be used to choose d; one option is
- // to use gradient descent for the step. A Cholesky decomposition can be
- // used to solve the linear system.
- //
- // Although an implementation can allow the caller to pass an array of
- // functions F_{i}(p) and an array of derivatives dF_{r}/dp_{c}, some
- // applications might involve a very large n that precludes storing all
- // the computed Jacobian matrix entries because of excessive memory
- // requirements. In such an application, it is better to compute instead
- // the entries of the m-by-m matrix J^T*J and the m-by-1 vector J^T*F.
- // Typically, m is small, so the memory requirements are not excessive. Also,
- // there might be additional structure to F for which the caller can take
- // advantage; for example, 3-tuples of components of F(p) might correspond to
- // vectors that can be manipulated using an already existing mathematics
- // library. The implementation here supports both approaches.
- namespace WwiseGTE
- {
- template <typename Real>
- class GaussNewtonMinimizer
- {
- public:
- // Convenient types for the domain vectors, the range vectors, the
- // function F and the Jacobian J.
- typedef GVector<Real> DVector; // numPDimensions
- typedef GVector<Real> RVector; // numFDimensions
- typedef GMatrix<Real> JMatrix; // numFDimensions-by-numPDimensions
- typedef GMatrix<Real> JTJMatrix; // numPDimensions-by-numPDimensions
- typedef GVector<Real> JTFVector; // numPDimensions
- typedef std::function<void(DVector const&, RVector&)> FFunction;
- typedef std::function<void(DVector const&, JMatrix&)> JFunction;
- typedef std::function<void(DVector const&, JTJMatrix&, JTFVector&)> JPlusFunction;
- // Create the minimizer that computes F(p) and J(p) directly.
- GaussNewtonMinimizer(int numPDimensions, int numFDimensions,
- FFunction const& inFFunction, JFunction const& inJFunction)
- :
- mNumPDimensions(numPDimensions),
- mNumFDimensions(numFDimensions),
- mFFunction(inFFunction),
- mJFunction(inJFunction),
- mF(mNumFDimensions),
- mJ(mNumFDimensions, mNumPDimensions),
- mJTJ(mNumPDimensions, mNumPDimensions),
- mNegJTF(mNumPDimensions),
- mDecomposer(mNumPDimensions),
- mUseJFunction(true)
- {
- LogAssert(mNumPDimensions > 0 && mNumFDimensions > 0, "Invalid dimensions.");
- }
- // Create the minimizer that computes J^T(p)*J(p) and -J(p)*F(p).
- GaussNewtonMinimizer(int numPDimensions, int numFDimensions,
- FFunction const& inFFunction, JPlusFunction const& inJPlusFunction)
- :
- mNumPDimensions(numPDimensions),
- mNumFDimensions(numFDimensions),
- mFFunction(inFFunction),
- mJPlusFunction(inJPlusFunction),
- mF(mNumFDimensions),
- mJ(mNumFDimensions, mNumPDimensions),
- mJTJ(mNumPDimensions, mNumPDimensions),
- mNegJTF(mNumPDimensions),
- mDecomposer(mNumPDimensions),
- mUseJFunction(false)
- {
- LogAssert(mNumPDimensions > 0 && mNumFDimensions > 0, "Invalid dimensions.");
- }
- // Disallow copy, assignment and move semantics.
- GaussNewtonMinimizer(GaussNewtonMinimizer const&) = delete;
- GaussNewtonMinimizer& operator=(GaussNewtonMinimizer const&) = delete;
- GaussNewtonMinimizer(GaussNewtonMinimizer&&) = delete;
- GaussNewtonMinimizer& operator=(GaussNewtonMinimizer&&) = delete;
- inline int GetNumPDimensions() const
- {
- return mNumPDimensions;
- }
- inline int GetNumFDimensions() const
- {
- return mNumFDimensions;
- }
- struct Result
- {
- DVector minLocation;
- Real minError;
- Real minErrorDifference;
- Real minUpdateLength;
- size_t numIterations;
- bool converged;
- };
- Result operator()(DVector const& p0, size_t maxIterations,
- Real updateLengthTolerance, Real errorDifferenceTolerance)
- {
- Result result;
- result.minLocation = p0;
- result.minError = std::numeric_limits<Real>::max();
- result.minErrorDifference = std::numeric_limits<Real>::max();
- result.minUpdateLength = (Real)0;
- result.numIterations = 0;
- result.converged = false;
- // As a simple precaution, ensure the tolerances are nonnegative.
- updateLengthTolerance = std::max(updateLengthTolerance, (Real)0);
- errorDifferenceTolerance = std::max(errorDifferenceTolerance, (Real)0);
- // Compute the initial error.
- mFFunction(p0, mF);
- result.minError = Dot(mF, mF);
- // Do the Gauss-Newton iterations.
- auto pCurrent = p0;
- for (result.numIterations = 1; result.numIterations <= maxIterations; ++result.numIterations)
- {
- ComputeLinearSystemInputs(pCurrent);
- if (!mDecomposer.Factor(mJTJ))
- {
- // TODO: The matrix mJTJ is positive semi-definite, so the
- // failure can occur when mJTJ has a zero eigenvalue in
- // which case mJTJ is not invertible. Generate an iterate
- // anyway, perhaps using gradient descent?
- return result;
- }
- mDecomposer.SolveLower(mJTJ, mNegJTF);
- mDecomposer.SolveUpper(mJTJ, mNegJTF);
- auto pNext = pCurrent + mNegJTF;
- mFFunction(pNext, mF);
- Real error = Dot(mF, mF);
- if (error < result.minError)
- {
- result.minErrorDifference = result.minError - error;
- result.minUpdateLength = Length(mNegJTF);
- result.minLocation = pNext;
- result.minError = error;
- if (result.minErrorDifference <= errorDifferenceTolerance
- || result.minUpdateLength <= updateLengthTolerance)
- {
- result.converged = true;
- return result;
- }
- }
- pCurrent = pNext;
- }
- return result;
- }
- private:
- void ComputeLinearSystemInputs(DVector const& pCurrent)
- {
- if (mUseJFunction)
- {
- mJFunction(pCurrent, mJ);
- mJTJ = MultiplyATB(mJ, mJ);
- mNegJTF = -(mF * mJ);
- }
- else
- {
- mJPlusFunction(pCurrent, mJTJ, mNegJTF);
- }
- }
- int mNumPDimensions, mNumFDimensions;
- FFunction mFFunction;
- JFunction mJFunction;
- JPlusFunction mJPlusFunction;
- // Storage for J^T(p)*J(p) and -J^T(p)*F(p) during the iterations.
- RVector mF;
- JMatrix mJ;
- JTJMatrix mJTJ;
- JTFVector mNegJTF;
- CholeskyDecomposition<Real> mDecomposer;
- bool mUseJFunction;
- };
- }
|