123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/RiemannianGeodesic.h>
- namespace WwiseGTE
- {
- template <typename Real>
- class EllipsoidGeodesic : public RiemannianGeodesic<Real>
- {
- public:
- // The ellipsoid is (x/a)^2 + (y/b)^2 + (z/c)^2 = 1, where xExtent is
- // 'a', yExtent is 'b', and zExtent is 'c'. The surface is represented
- // parametrically by angles u and v, say
- // P(u,v) = (x(u,v),y(u,v),z(u,v)),
- // P(u,v) =(a*cos(u)*sin(v), b*sin(u)*sin(v), c*cos(v))
- // with 0 <= u < 2*pi and 0 <= v <= pi. The first-order derivatives
- // are
- // dP/du = (-a*sin(u)*sin(v), b*cos(u)*sin(v), 0)
- // dP/dv = (a*cos(u)*cos(v), b*sin(u)*cos(v), -c*sin(v))
- // The metric tensor elements are
- // g_{00} = Dot(dP/du,dP/du)
- // g_{01} = Dot(dP/du,dP/dv)
- // g_{10} = g_{01}
- // g_{11} = Dot(dP/dv,dP/dv)
- EllipsoidGeodesic(Real xExtent, Real yExtent, Real zExtent)
- :
- RiemannianGeodesic<Real>(2),
- mXExtent(xExtent),
- mYExtent(yExtent),
- mZExtent(zExtent)
- {
- }
- virtual ~EllipsoidGeodesic()
- {
- }
- Vector3<Real> ComputePosition(GVector<Real> const& point)
- {
- Real cos0 = std::cos(point[0]);
- Real sin0 = std::sin(point[0]);
- Real cos1 = std::cos(point[1]);
- Real sin1 = std::sin(point[1]);
- return Vector3<Real>
- {
- mXExtent * cos0 * sin1,
- mYExtent * sin0 * sin1,
- mZExtent * cos1
- };
- }
- // To compute the geodesic path connecting two parameter points
- // (u0,v0) and (u1,v1):
- //
- // float a, b, c; // the extents of the ellipsoid
- // EllipsoidGeodesic<float> EG(a,b,c);
- // GVector<float> param0(2), param1(2);
- // param0[0] = u0;
- // param0[1] = v0;
- // param1[0] = u1;
- // param1[1] = v1;
- //
- // int quantity;
- // std:vector<GVector<float>> path;
- // EG.ComputeGeodesic(param0, param1, quantity, path);
- private:
- virtual void ComputeMetric(GVector<Real> const& point) override
- {
- mCos0 = std::cos(point[0]);
- mSin0 = std::sin(point[0]);
- mCos1 = std::cos(point[1]);
- mSin1 = std::sin(point[1]);
- mDer0 = { -mXExtent * mSin0 * mSin1, mYExtent * mCos0 * mSin1, (Real)0 };
- mDer1 = { mXExtent * mCos0 * mCos1, mYExtent * mSin0 * mCos1, -mZExtent * mSin1 };
- this->mMetric(0, 0) = Dot(mDer0, mDer0);
- this->mMetric(0, 1) = Dot(mDer0, mDer1);
- this->mMetric(1, 0) = this->mMetric(0, 1);
- this->mMetric(1, 1) = Dot(mDer1, mDer1);
- }
- virtual void ComputeChristoffel1(GVector<Real> const&) override
- {
- Vector3<Real> der00
- {
- -mXExtent * mCos0 * mSin1,
- -mYExtent * mSin0 * mSin1,
- (Real)0
- };
- Vector3<Real> der01
- {
- -mXExtent * mSin0 * mCos1,
- mYExtent * mCos0 * mCos1,
- (Real)0
- };
- Vector3<Real> der11
- {
- -mXExtent * mCos0 * mSin1,
- -mYExtent * mSin0 * mSin1,
- -mZExtent * mCos1
- };
- this->mChristoffel1[0](0, 0) = Dot(der00, mDer0);
- this->mChristoffel1[0](0, 1) = Dot(der01, mDer0);
- this->mChristoffel1[0](1, 0) = this->mChristoffel1[0](0, 1);
- this->mChristoffel1[0](1, 1) = Dot(der11, mDer0);
- this->mChristoffel1[1](0, 0) = Dot(der00, mDer1);
- this->mChristoffel1[1](0, 1) = Dot(der01, mDer1);
- this->mChristoffel1[1](1, 0) = this->mChristoffel1[1](0, 1);
- this->mChristoffel1[1](1, 1) = Dot(der11, mDer1);
- }
- // The ellipsoid axis half-lengths.
- Real mXExtent, mYExtent, mZExtent;
- // We are guaranteed that RiemannianGeodesic calls ComputeMetric
- // before ComputeChristoffel1. Thus, we can compute the surface
- // first- and second-order derivatives in ComputeMetric and cache
- // the results for use in ComputeChristoffel1.
- Real mCos0, mSin0, mCos1, mSin1;
- Vector3<Real> mDer0, mDer1;
- };
- }
|