DistRectangle3OrientedBox3.h 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. // David Eberly, Geometric Tools, Redmond WA 98052
  2. // Copyright (c) 1998-2020
  3. // Distributed under the Boost Software License, Version 1.0.
  4. // https://www.boost.org/LICENSE_1_0.txt
  5. // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
  6. // Version: 4.0.2019.08.13
  7. #pragma once
  8. #include <Mathematics/DCPQuery.h>
  9. #include <Mathematics/LCPSolver.h>
  10. #include <Mathematics/OrientedBox.h>
  11. #include <Mathematics/Rectangle.h>
  12. #include <Mathematics/Vector3.h>
  13. // Compute the distance between a rectangle and an oriented box in 3D. The
  14. // algorithm is based on using an LCP solver for the convex quadratic
  15. // programming problem. For details, see
  16. // https://www.geometrictools.com/Documentation/ConvexQuadraticProgramming.pdf
  17. namespace WwiseGTE
  18. {
  19. template <typename Real>
  20. class DCPQuery<Real, Rectangle3<Real>, OrientedBox3<Real>>
  21. {
  22. public:
  23. struct Result
  24. {
  25. bool queryIsSuccessful;
  26. // These members are valid only when queryIsSuccessful is true;
  27. // otherwise, they are all set to zero.
  28. Real distance, sqrDistance;
  29. std::array<Real, 2> rectangleParameter;
  30. std::array<Real, 3> boxParameter;
  31. Vector3<Real> closestPoint[2];
  32. // The number of iterations used by LCPSolver regardless of
  33. // whether the query is successful.
  34. int numLCPIterations;
  35. };
  36. // The default maximum iterations is 81 (n = 9, maxIterations = n*n).
  37. // If the solver fails to converge, try increasing the maximum number
  38. // of iterations.
  39. void SetMaxLCPIterations(int maxLCPIterations)
  40. {
  41. mLCP.SetMaxIterations(maxLCPIterations);
  42. }
  43. Result operator()(Rectangle3<Real> const& rectangle, OrientedBox3<Real> const& box)
  44. {
  45. Result result;
  46. // Rigidly transform the rectangle and oriented box so that the
  47. // oriented box becomes a canonical box.
  48. Vector3<Real> K = box.extent * (Real)2;
  49. Vector3<Real> tempV = rectangle.center - box.center;
  50. Vector3<Real> V, E0, E1;
  51. for (int i = 0; i < 3; ++i)
  52. {
  53. V[i] = Dot(box.axis[i], tempV) + box.extent[i];
  54. E0[i] = Dot(box.axis[i], rectangle.axis[0]);
  55. E1[i] = Dot(box.axis[i], rectangle.axis[1]);
  56. }
  57. // Convert the oriented rectangle to a regular one (origin at a
  58. // corner).
  59. Vector3<Real> scaledE0 = E0 * rectangle.extent[0];
  60. Vector3<Real> scaledE1 = E1 * rectangle.extent[1];
  61. V -= scaledE0 + scaledE1;
  62. E0 = scaledE0 * (Real)2;
  63. E1 = scaledE1 * (Real)2;
  64. // Compute quantities to initialize q and M in the LCP.
  65. Real dotVE0 = Dot(V, E0);
  66. Real dotVE1 = Dot(V, E1);
  67. Real dotE0E0 = Dot(E0, E0);
  68. Real dotE1E1 = Dot(E1, E1);
  69. // The LCP has 5 variables and 5 (nontrivial) inequality
  70. // constraints.
  71. std::array<Real, 10> q =
  72. {
  73. -V[0], -V[1], -V[2], dotVE0, dotVE1, K[0], K[1], K[2], (Real)1, (Real)1
  74. };
  75. std::array<std::array<Real, 10>, 10> M;
  76. M[0] = { (Real)1, (Real)0, (Real)0, -E0[0], -E1[0], (Real)1, (Real)0, (Real)0, (Real)0, (Real)0 };
  77. M[1] = { (Real)0, (Real)1, (Real)0, -E0[1], -E1[1], (Real)0, (Real)1, (Real)0, (Real)0, (Real)0 };
  78. M[2] = { (Real)0, (Real)0, (Real)1, -E0[2], -E1[2], (Real)0, (Real)0, (Real)1, (Real)0 , (Real)0 };
  79. M[3] = { -E0[0], -E0[1], -E0[2], dotE0E0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)1, (Real)0 };
  80. M[4] = { -E1[0], -E1[1], -E1[2], (Real)0, dotE1E1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)1 };
  81. M[5] = { (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
  82. M[6] = { (Real)0, (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
  83. M[7] = { (Real)0, (Real)0, (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
  84. M[8] = { (Real)0, (Real)0, (Real)0, (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
  85. M[9] = { (Real)0, (Real)0, (Real)0, (Real)0, (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
  86. std::array<Real, 10> w, z;
  87. if (mLCP.Solve(q, M, w, z))
  88. {
  89. result.queryIsSuccessful = true;
  90. Real t0 = (z[3] * (Real)2 - (Real)1) * rectangle.extent[0];
  91. Real t1 = (z[4] * (Real)2 - (Real)1) * rectangle.extent[1];
  92. result.rectangleParameter[0] = t0;
  93. result.rectangleParameter[1] = t1;
  94. result.closestPoint[0] = rectangle.center + t0 * rectangle.axis[0] + t1 * rectangle.axis[1];
  95. result.closestPoint[1] = box.center;
  96. for (int i = 0; i < 3; ++i)
  97. {
  98. result.boxParameter[i] = z[i] - box.extent[i];
  99. result.closestPoint[1] += result.boxParameter[i] * box.axis[i];
  100. }
  101. Vector3<Real> diff = result.closestPoint[1] - result.closestPoint[0];
  102. result.sqrDistance = Dot(diff, diff);
  103. result.distance = std::sqrt(result.sqrDistance);
  104. }
  105. else
  106. {
  107. // If you reach this case, the maximum number of iterations
  108. // was not specified to be large enough or there is a problem
  109. // due to floating-point rounding errors. If you believe the
  110. // latter is true, file a bug report.
  111. result.queryIsSuccessful = false;
  112. for (int i = 0; i < 2; ++i)
  113. {
  114. result.rectangleParameter[i] = (Real)0;
  115. }
  116. for (int i = 0; i < 3; ++i)
  117. {
  118. result.boxParameter[i] = (Real)0;
  119. result.closestPoint[0][i] = (Real)0;
  120. result.closestPoint[1][i] = (Real)0;
  121. }
  122. result.distance = (Real)0;
  123. result.sqrDistance = (Real)0;
  124. }
  125. result.numLCPIterations = mLCP.GetNumIterations();
  126. return result;
  127. }
  128. private:
  129. LCPSolver<Real, 10> mLCP;
  130. };
  131. }