123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/DistLineSegment.h>
- #include <Mathematics/Triangle.h>
- #include <Mathematics/Vector3.h>
- namespace WwiseGTE
- {
- template <typename Real>
- class DCPQuery<Real, Line3<Real>, Triangle3<Real>>
- {
- public:
- struct Result
- {
- Real distance, sqrDistance;
- Real lineParameter, triangleParameter[3];
- Vector3<Real> closestPoint[2];
- };
- Result operator()(Line3<Real> const& line, Triangle3<Real> const& triangle)
- {
- Result result;
- // Test if line intersects triangle. If so, the squared distance
- // is zero.
- Vector3<Real> edge0 = triangle.v[1] - triangle.v[0];
- Vector3<Real> edge1 = triangle.v[2] - triangle.v[0];
- Vector3<Real> normal = UnitCross(edge0, edge1);
- Real NdD = Dot(normal, line.direction);
- if (std::fabs(NdD) > (Real)0)
- {
- // The line and triangle are not parallel, so the line
- // intersects/ the plane of the triangle.
- Vector3<Real> diff = line.origin - triangle.v[0];
- Vector3<Real> basis[3]; // {D, U, V}
- basis[0] = line.direction;
- ComputeOrthogonalComplement<Real>(1, basis);
- Real UdE0 = Dot(basis[1], edge0);
- Real UdE1 = Dot(basis[1], edge1);
- Real UdDiff = Dot(basis[1], diff);
- Real VdE0 = Dot(basis[2], edge0);
- Real VdE1 = Dot(basis[2], edge1);
- Real VdDiff = Dot(basis[2], diff);
- Real invDet = ((Real)1) / (UdE0 * VdE1 - UdE1 * VdE0);
- // Barycentric coordinates for the point of intersection.
- Real b1 = (VdE1 * UdDiff - UdE1 * VdDiff) * invDet;
- Real b2 = (UdE0 * VdDiff - VdE0 * UdDiff) * invDet;
- Real b0 = (Real)1 - b1 - b2;
- if (b0 >= (Real)0 && b1 >= (Real)0 && b2 >= (Real)0)
- {
- // Line parameter for the point of intersection.
- Real DdE0 = Dot(line.direction, edge0);
- Real DdE1 = Dot(line.direction, edge1);
- Real DdDiff = Dot(line.direction, diff);
- result.lineParameter = b1 * DdE0 + b2 * DdE1 - DdDiff;
- // Barycentric coordinates for the point of intersection.
- result.triangleParameter[0] = b0;
- result.triangleParameter[1] = b1;
- result.triangleParameter[2] = b2;
- // The intersection point is inside or on the triangle.
- result.closestPoint[0] = line.origin + result.lineParameter * line.direction;
- result.closestPoint[1] = triangle.v[0] + b1 * edge0 + b2 * edge1;
- result.distance = (Real)0;
- result.sqrDistance = (Real)0;
- return result;
- }
- }
- // Either (1) the line is not parallel to the triangle and the
- // point of intersection of the line and the plane of the triangle
- // is outside the triangle or (2) the line and triangle are
- // parallel. Regardless, the closest point on the triangle is on
- // an edge of the triangle. Compare the line to all three edges
- // of the triangle.
- result.distance = std::numeric_limits<Real>::max();
- result.sqrDistance = std::numeric_limits<Real>::max();
- for (int i0 = 2, i1 = 0; i1 < 3; i0 = i1++)
- {
- Vector3<Real> segCenter = (Real)0.5 * (triangle.v[i0] + triangle.v[i1]);
- Vector3<Real> segDirection = triangle.v[i1] - triangle.v[i0];
- Real segExtent = (Real)0.5 * Normalize(segDirection);
- Segment3<Real> segment(segCenter, segDirection, segExtent);
- DCPQuery<Real, Line3<Real>, Segment3<Real>> query;
- auto lsResult = query(line, segment);
- if (lsResult.sqrDistance < result.sqrDistance)
- {
- result.sqrDistance = lsResult.sqrDistance;
- result.distance = lsResult.distance;
- result.lineParameter = lsResult.parameter[0];
- result.triangleParameter[i0] = (Real)0.5 * ((Real)1 -
- lsResult.parameter[0] / segExtent);
- result.triangleParameter[i1] = (Real)1 -
- result.triangleParameter[i0];
- result.triangleParameter[3 - i0 - i1] = (Real)0;
- result.closestPoint[0] = lsResult.closestPoint[0];
- result.closestPoint[1] = lsResult.closestPoint[1];
- }
- }
- return result;
- }
- };
- }
|