123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/ApprGaussian3.h>
- #include <Mathematics/Hyperellipsoid.h>
- #include <Mathematics/Matrix3x3.h>
- #include <Mathematics/Projection.h>
- #include <Mathematics/Rotation.h>
- namespace WwiseGTE
- {
- // The input points are fit with a Gaussian distribution. The center C of
- // the ellipsoid is chosen to be the mean of the distribution. The axes
- // of the ellipsoid are chosen to be the eigenvectors of the covariance
- // matrix M. The shape of the ellipsoid is determined by the absolute
- // values of the eigenvalues. NOTE: The construction is ill-conditioned
- // if the points are (nearly) collinear or (nearly) planar. In this case
- // M has a (nearly) zero eigenvalue, so inverting M is problematic.
- template <typename Real>
- bool GetContainer(int numPoints, Vector3<Real> const* points, Ellipsoid3<Real>& ellipsoid)
- {
- // Fit the points with a Gaussian distribution. The covariance
- // matrix is M = sum_j D[j]*U[j]*U[j]^T, where D[j] are the
- // eigenvalues and U[j] are corresponding unit-length eigenvectors.
- ApprGaussian3<Real> fitter;
- if (fitter.Fit(numPoints, points))
- {
- OrientedBox3<Real> box = fitter.GetParameters();
- // If either eigenvalue is nonpositive, adjust the D[] values so
- // that we actually build an ellipsoid.
- for (int j = 0; j < 3; ++j)
- {
- if (box.extent[j] < (Real)0)
- {
- box.extent[j] = -box.extent[j];
- }
- }
- // Grow the ellipsoid, while retaining its shape determined by the
- // covariance matrix, to enclose all the input points. The
- // quadratic/ form that is used for the ellipsoid construction is
- // Q(X) = (X-C)^T*M*(X-C)
- // = (X-C)^T*(sum_j D[j]*U[j]*U[j]^T)*(X-C)
- // = sum_j D[j]*Dot(U[j],X-C)^2
- // If the maximum value of Q(X[i]) for all input points is V^2,
- // then a bounding ellipsoid is Q(X) = V^2 since Q(X[i]) <= V^2
- // for all i.
- Real maxValue = (Real)0;
- for (int i = 0; i < numPoints; ++i)
- {
- Vector3<Real> diff = points[i] - box.center;
- Real dot[3] =
- {
- Dot(box.axis[0], diff),
- Dot(box.axis[1], diff),
- Dot(box.axis[2], diff)
- };
- Real value =
- box.extent[0] * dot[0] * dot[0] +
- box.extent[1] * dot[1] * dot[1] +
- box.extent[2] * dot[2] * dot[2];
- if (value > maxValue)
- {
- maxValue = value;
- }
- }
- // Arrange for the quadratic to satisfy Q(X) <= 1.
- ellipsoid.center = box.center;
- for (int j = 0; j < 3; ++j)
- {
- ellipsoid.axis[j] = box.axis[j];
- ellipsoid.extent[j] = std::sqrt(maxValue / box.extent[j]);
- }
- return true;
- }
- return false;
- }
- // Test for containment of a point inside an ellipsoid.
- template <typename Real>
- bool InContainer(Vector3<Real> const& point, Ellipsoid3<Real> const& ellipsoid)
- {
- Vector3<Real> diff = point - ellipsoid.center;
- Vector3<Real> standardized{
- Dot(diff, ellipsoid.axis[0]) / ellipsoid.extent[0],
- Dot(diff, ellipsoid.axis[1]) / ellipsoid.extent[1],
- Dot(diff, ellipsoid.axis[2]) / ellipsoid.extent[2] };
- return Length(standardized) <= (Real)1;
- }
- // Construct a bounding ellipsoid for the two input ellipsoids. The result is
- // not necessarily the minimum-volume ellipsoid containing the two ellipsoids.
- template <typename Real>
- bool MergeContainers(Ellipsoid3<Real> const& ellipsoid0,
- Ellipsoid3<Real> const& ellipsoid1, Ellipsoid3<Real>& merge)
- {
- // Compute the average of the input centers
- merge.center = (Real)0.5 * (ellipsoid0.center + ellipsoid1.center);
- // The bounding ellipsoid orientation is the average of the input
- // orientations.
- Matrix3x3<Real> rot0, rot1;
- rot0.SetCol(0, ellipsoid0.axis[0]);
- rot0.SetCol(1, ellipsoid0.axis[1]);
- rot0.SetCol(2, ellipsoid0.axis[2]);
- rot1.SetCol(0, ellipsoid1.axis[0]);
- rot1.SetCol(1, ellipsoid1.axis[1]);
- rot1.SetCol(2, ellipsoid1.axis[2]);
- Quaternion<Real> q0 = Rotation<3, Real>(rot0);
- Quaternion<Real> q1 = Rotation<3, Real>(rot1);
- if (Dot(q0, q1) < (Real)0)
- {
- q1 = -q1;
- }
- Quaternion<Real> q = q0 + q1;
- Normalize(q);
- Matrix3x3<Real> rot = Rotation<3, Real>(q);
- for (int j = 0; j < 3; ++j)
- {
- merge.axis[j] = rot.GetCol(j);
- }
- // Project the input ellipsoids onto the axes obtained by the average
- // of the orientations and that go through the center obtained by the
- // average of the centers.
- for (int i = 0; i < 3; ++i)
- {
- // Projection axis.
- Line3<Real> line(merge.center, merge.axis[i]);
- // Project ellipsoids onto the axis.
- Real min0, max0, min1, max1;
- Project(ellipsoid0, line, min0, max0);
- Project(ellipsoid1, line, min1, max1);
- // Determine the smallest interval containing the projected
- // intervals.
- Real maxIntr = (max0 >= max1 ? max0 : max1);
- Real minIntr = (min0 <= min1 ? min0 : min1);
- // Update the average center to be the center of the bounding box
- // defined by the projected intervals.
- merge.center += line.direction * ((Real)0.5 * (minIntr + maxIntr));
- // Compute the extents of the box based on the new center.
- merge.extent[i] = (Real)0.5 * (maxIntr - minIntr);
- }
- return true;
- }
- }
|