123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/BasisFunction.h>
- #include <Mathematics/ParametricSurface.h>
- namespace WwiseGTE
- {
- template <int N, typename Real>
- class BSplineSurface : public ParametricSurface<N, Real>
- {
- public:
- // Construction. If the input controls is non-null, a copy is made of
- // the controls. To defer setting the control points, pass a null
- // pointer and later access the control points via GetControls() or
- // SetControl() member functions. The input 'controls' must be stored
- // in row-major order, control[i0 + numControls0*i1]. As a 2D array,
- // this corresponds to control2D[i1][i0].
- BSplineSurface(BasisFunctionInput<Real> const input[2], Vector<N, Real> const* controls)
- :
- ParametricSurface<N, Real>((Real)0, (Real)1, (Real)0, (Real)1, true)
- {
- for (int i = 0; i < 2; ++i)
- {
- mNumControls[i] = input[i].numControls;
- mBasisFunction[i].Create(input[i]);
- }
- // The mBasisFunction stores the domain but so does
- // ParametricCurve.
- this->mUMin = mBasisFunction[0].GetMinDomain();
- this->mUMax = mBasisFunction[0].GetMaxDomain();
- this->mVMin = mBasisFunction[1].GetMinDomain();
- this->mVMax = mBasisFunction[1].GetMaxDomain();
- // The replication of control points for periodic splines is
- // avoided by wrapping the i-loop index in Evaluate.
- int numControls = mNumControls[0] * mNumControls[1];
- mControls.resize(numControls);
- if (controls)
- {
- std::copy(controls, controls + numControls, mControls.begin());
- }
- else
- {
- Vector<N, Real> zero{ (Real)0 };
- std::fill(mControls.begin(), mControls.end(), zero);
- }
- this->mConstructed = true;
- }
- // Member access. The index 'dim' must be in {0,1}.
- inline BasisFunction<Real> const& GetBasisFunction(int dim) const
- {
- return mBasisFunction[dim];
- }
- inline int GetNumControls(int dim) const
- {
- return mNumControls[dim];
- }
- inline Vector<N, Real>* GetControls()
- {
- return mControls.data();
- }
- inline Vector<N, Real> const* GetControls() const
- {
- return mControls.data();
- }
- void SetControl(int i0, int i1, Vector<N, Real> const& control)
- {
- if (0 <= i0 && i0 < GetNumControls(0)
- && 0 <= i1 && i1 < GetNumControls(1))
- {
- mControls[i0 + mNumControls[0] * i1] = control;
- }
- }
- Vector<N, Real> const& GetControl(int i0, int i1) const
- {
- if (0 <= i0 && i0 < GetNumControls(0) && 0 <= i1 && i1 < GetNumControls(1))
- {
- return mControls[i0 + mNumControls[0] * i1];
- }
- else
- {
- return mControls[0];
- }
- }
- // Evaluation of the surface. The function supports derivative
- // calculation through order 2; that is, order <= 2 is required. If
- // you want only the position, pass in order of 0. If you want the
- // position and first-order derivatives, pass in order of 1, and so
- // on. The output array 'jet' must have enough storage to support the
- // maximum order. The values are ordered as: position X; first-order
- // derivatives dX/du, dX/dv; second-order derivatives d2X/du2,
- // d2X/dudv, d2X/dv2.
- virtual void Evaluate(Real u, Real v, unsigned int order, Vector<N, Real>* jet) const override
- {
- unsigned int const supOrder = ParametricSurface<N, Real>::SUP_ORDER;
- if (!this->mConstructed || order >= supOrder)
- {
- // Return a zero-valued jet for invalid state.
- for (unsigned int i = 0; i < supOrder; ++i)
- {
- jet[i].MakeZero();
- }
- return;
- }
- int iumin, iumax, ivmin, ivmax;
- mBasisFunction[0].Evaluate(u, order, iumin, iumax);
- mBasisFunction[1].Evaluate(v, order, ivmin, ivmax);
- // Compute position.
- jet[0] = Compute(0, 0, iumin, iumax, ivmin, ivmax);
- if (order >= 1)
- {
- // Compute first-order derivatives.
- jet[1] = Compute(1, 0, iumin, iumax, ivmin, ivmax);
- jet[2] = Compute(0, 1, iumin, iumax, ivmin, ivmax);
- if (order >= 2)
- {
- // Compute second-order derivatives.
- jet[3] = Compute(2, 0, iumin, iumax, ivmin, ivmax);
- jet[4] = Compute(1, 1, iumin, iumax, ivmin, ivmax);
- jet[5] = Compute(0, 2, iumin, iumax, ivmin, ivmax);
- }
- }
- }
- private:
- // Support for Evaluate(...).
- Vector<N, Real> Compute(unsigned int uOrder, unsigned int vOrder,
- int iumin, int iumax, int ivmin, int ivmax) const
- {
- // The j*-indices introduce a tiny amount of overhead in order to
- // handle both aperiodic and periodic splines. For aperiodic
- // splines, j* = i* always.
- int const numControls0 = mNumControls[0];
- int const numControls1 = mNumControls[1];
- Vector<N, Real> result;
- result.MakeZero();
- for (int iv = ivmin; iv <= ivmax; ++iv)
- {
- Real tmpv = mBasisFunction[1].GetValue(vOrder, iv);
- int jv = (iv >= numControls1 ? iv - numControls1 : iv);
- for (int iu = iumin; iu <= iumax; ++iu)
- {
- Real tmpu = mBasisFunction[0].GetValue(uOrder, iu);
- int ju = (iu >= numControls0 ? iu - numControls0 : iu);
- result += (tmpu * tmpv) * mControls[ju + numControls0 * jv];
- }
- }
- return result;
- }
- std::array<BasisFunction<Real>, 2> mBasisFunction;
- std::array<int, 2> mNumControls;
- std::vector<Vector<N, Real>> mControls;
- };
- }
|