123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/Matrix.h>
- #include <Mathematics/Vector3.h>
- #include <Mathematics/Hypersphere.h>
- #include <Mathematics/SymmetricEigensolver.h>
- namespace WwiseGTE
- {
- // The quadratic fit is
- // 0 = C[0] + C[1]*X + C[2]*Y + C[3]*Z + C[4]*X^2 + C[5]*Y^2
- // + C[6]*Z^2 + C[7]*X*Y + C[8]*X*Z + C[9]*Y*Z
- // subject to Length(C) = 1. Minimize E(C) = C^t M C with Length(C) = 1
- // and M = (sum_i V_i)(sum_i V_i)^t where
- // V = (1, X, Y, Z, X^2, Y^2, Z^2, X*Y, X*Z, Y*Z)
- // The minimum value is the smallest eigenvalue of M and C is a
- // corresponding unit length eigenvector.
- //
- // Input:
- // n = number of points to fit
- // p[0..n-1] = array of points to fit
- //
- // Output:
- // c[0..9] = coefficients of quadratic fit (the eigenvector)
- // return value of function is nonnegative and a measure of the fit
- // (the minimum eigenvalue; 0 = exact fit, positive otherwise)
- //
- // Canonical forms. The quadratic equation can be factored into
- // P^T A P + B^T P + K = 0 where P = (X,Y,Z), K = C[0],
- // B = (C[1],C[2],C[3]), and A is a 3x3 symmetric matrix with
- // A00 = C[4], A11 = C[5], A22 = C[6], A01 = C[7]/2, A02 = C[8]/2, and
- // A12 = C[9]/2. Matrix A = R^T D R where R is orthogonal and D is
- // diagonal (using an eigendecomposition). Define V = R P = (v0,v1,v2),
- // E = R B = (e0,e1,e2), D = diag(d0,d1,d2), and f = K to obtain
- // d0 v0^2 + d1 v1^2 + d2 v^2 + e0 v0 + e1 v1 + e2 v2 + f = 0
- // The characterization depends on the signs of the d_i.
- template <typename Real>
- class ApprQuadratic3
- {
- public:
- Real operator()(int numPoints, Vector3<Real> const* points, Real coefficients[10])
- {
- Matrix<10, 10, Real> A; // constructor sets A to zero
- for (int i = 0; i < numPoints; ++i)
- {
- Real x = points[i][0];
- Real y = points[i][1];
- Real z = points[i][2];
- Real x2 = x * x;
- Real y2 = y * y;
- Real z2 = z * z;
- Real xy = x * y;
- Real xz = x * z;
- Real yz = y * z;
- Real x3 = x * x2;
- Real xy2 = x * y2;
- Real xz2 = x * z2;
- Real x2y = x * xy;
- Real x2z = x * xz;
- Real xyz = x * y * z;
- Real y3 = y * y2;
- Real yz2 = y * z2;
- Real y2z = y * yz;
- Real z3 = z * z2;
- Real x4 = x * x3;
- Real x2y2 = x * xy2;
- Real x2z2 = x * xz2;
- Real x3y = x * x2y;
- Real x3z = x * x2z;
- Real x2yz = x * xyz;
- Real y4 = y * y3;
- Real y2z2 = y * yz2;
- Real xy3 = x * y3;
- Real xy2z = x * y2z;
- Real y3z = y * y2z;
- Real z4 = z * z3;
- Real xyz2 = x * yz2;
- Real xz3 = x * z3;
- Real yz3 = y * z3;
- A(0, 1) += x;
- A(0, 2) += y;
- A(0, 3) += z;
- A(0, 4) += x2;
- A(0, 5) += y2;
- A(0, 6) += z2;
- A(0, 7) += xy;
- A(0, 8) += xz;
- A(0, 9) += yz;
- A(1, 4) += x3;
- A(1, 5) += xy2;
- A(1, 6) += xz2;
- A(1, 7) += x2y;
- A(1, 8) += x2z;
- A(1, 9) += xyz;
- A(2, 5) += y3;
- A(2, 6) += yz2;
- A(2, 9) += y2z;
- A(3, 6) += z3;
- A(4, 4) += x4;
- A(4, 5) += x2y2;
- A(4, 6) += x2z2;
- A(4, 7) += x3y;
- A(4, 8) += x3z;
- A(4, 9) += x2yz;
- A(5, 5) += y4;
- A(5, 6) += y2z2;
- A(5, 7) += xy3;
- A(5, 8) += xy2z;
- A(5, 9) += y3z;
- A(6, 6) += z4;
- A(6, 7) += xyz2;
- A(6, 8) += xz3;
- A(6, 9) += yz3;
- A(9, 9) += y2z2;
- }
- A(0, 0) = static_cast<Real>(numPoints);
- A(1, 1) = A(0, 4);
- A(1, 2) = A(0, 7);
- A(1, 3) = A(0, 8);
- A(2, 2) = A(0, 5);
- A(2, 3) = A(0, 9);
- A(2, 4) = A(1, 7);
- A(2, 7) = A(1, 5);
- A(2, 8) = A(1, 9);
- A(3, 3) = A(0, 6);
- A(3, 4) = A(1, 8);
- A(3, 5) = A(2, 9);
- A(3, 7) = A(1, 9);
- A(3, 8) = A(1, 6);
- A(3, 9) = A(2, 6);
- A(7, 7) = A(4, 5);
- A(7, 8) = A(4, 9);
- A(7, 9) = A(5, 8);
- A(8, 8) = A(4, 6);
- A(8, 9) = A(6, 7);
- A(9, 9) = A(5, 6);
- for (int row = 0; row < 10; ++row)
- {
- for (int col = 0; col < row; ++col)
- {
- A(row, col) = A(col, row);
- }
- }
- Real invNumPoints = (Real)1 / static_cast<Real>(numPoints);
- for (int row = 0; row < 10; ++row)
- {
- for (int col = 0; col < 10; ++col)
- {
- A(row, col) *= invNumPoints;
- }
- }
- SymmetricEigensolver<Real> es(10, 1024);
- es.Solve(&A[0], +1);
- es.GetEigenvector(0, &coefficients[0]);
- // For an exact fit, numeric round-off errors might make the
- // minimum eigenvalue just slightly negative. Return the absolute
- // value because the application might rely on the return value
- // being nonnegative.
- return std::fabs(es.GetEigenvalue(0));
- }
- };
- // If you think your points are nearly spherical, use this. The sphere is
- // of form C'[0]+C'[1]*X+C'[2]*Y+C'[3]*Z+C'[4]*(X^2+Y^2+Z^2) where
- // Length(C') = 1. The function returns
- // C = (C'[0]/C'[4],C'[1]/C'[4],C'[2]/C'[4],C'[3]/C'[4]), so the fitted
- // sphere is C[0]+C[1]*X+C[2]*Y+C[3]*Z+X^2+Y^2+Z^2. The center is
- // (xc,yc,zc) = -0.5*(C[1],C[2],C[3]) and the radius is
- // r = sqrt(xc*xc+yc*yc+zc*zc-C[0]).
- template <typename Real>
- class ApprQuadraticSphere3
- {
- public:
- Real operator()(int numPoints, Vector3<Real> const* points, Sphere3<Real>& sphere)
- {
- Matrix<5, 5, Real> A; // constructor sets A to zero
- for (int i = 0; i < numPoints; ++i)
- {
- Real x = points[i][0];
- Real y = points[i][1];
- Real z = points[i][2];
- Real x2 = x * x;
- Real y2 = y * y;
- Real z2 = z * z;
- Real xy = x * y;
- Real xz = x * z;
- Real yz = y * z;
- Real r2 = x2 + y2 + z2;
- Real xr2 = x * r2;
- Real yr2 = y * r2;
- Real zr2 = z * r2;
- Real r4 = r2 * r2;
- A(0, 1) += x;
- A(0, 2) += y;
- A(0, 3) += z;
- A(0, 4) += r2;
- A(1, 1) += x2;
- A(1, 2) += xy;
- A(1, 3) += xz;
- A(1, 4) += xr2;
- A(2, 2) += y2;
- A(2, 3) += yz;
- A(2, 4) += yr2;
- A(3, 3) += z2;
- A(3, 4) += zr2;
- A(4, 4) += r4;
- }
- A(0, 0) = static_cast<Real>(numPoints);
- for (int row = 0; row < 5; ++row)
- {
- for (int col = 0; col < row; ++col)
- {
- A(row, col) = A(col, row);
- }
- }
- Real invNumPoints = (Real)1 / static_cast<Real>(numPoints);
- for (int row = 0; row < 5; ++row)
- {
- for (int col = 0; col < 5; ++col)
- {
- A(row, col) *= invNumPoints;
- }
- }
- SymmetricEigensolver<Real> es(5, 1024);
- es.Solve(&A[0], +1);
- Vector<5, Real> evector;
- es.GetEigenvector(0, &evector[0]);
- // TODO: Guard against zero divide?
- Real inv = (Real)1 / evector[4];
- Real coefficients[4];
- for (int row = 0; row < 4; ++row)
- {
- coefficients[row] = inv * evector[row];
- }
- sphere.center[0] = (Real)-0.5 * coefficients[1];
- sphere.center[1] = (Real)-0.5 * coefficients[2];
- sphere.center[2] = (Real)-0.5 * coefficients[3];
- sphere.radius = std::sqrt(std::fabs(Dot(sphere.center, sphere.center) - coefficients[0]));
- // For an exact fit, numeric round-off errors might make the
- // minimum eigenvalue just slightly negative. Return the
- // absolute value because the application might rely on the
- // return value being nonnegative.
- return std::fabs(es.GetEigenvalue(0));
- }
- };
- }
|