123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/ApprQuery.h>
- #include <Mathematics/Array2.h>
- #include <Mathematics/GMatrix.h>
- #include <array>
- // The samples are (x[i],w[i]) for 0 <= i < S. Think of w as a function of
- // x, say w = f(x). The function fits the samples with a polynomial of
- // degree d, say w = sum_{i=0}^d c[i]*x^i. The method is a least-squares
- // fitting algorithm. The mParameters stores the coefficients c[i] for
- // 0 <= i <= d. The observation type is std::array<Real,2>, which represents
- // a pair (x,w).
- //
- // WARNING. The fitting algorithm for polynomial terms
- // (1,x,x^2,...,x^d)
- // is known to be nonrobust for large degrees and for large magnitude data.
- // One alternative is to use orthogonal polynomials
- // (f[0](x),...,f[d](x))
- // and apply the least-squares algorithm to these. Another alternative is to
- // transform
- // (x',w') = ((x-xcen)/rng, w/rng)
- // where xmin = min(x[i]), xmax = max(x[i]), xcen = (xmin+xmax)/2, and
- // rng = xmax-xmin. Fit the (x',w') points,
- // w' = sum_{i=0}^d c'[i]*(x')^i.
- // The original polynomial is evaluated as
- // w = rng*sum_{i=0}^d c'[i]*((x-xcen)/rng)^i
- namespace WwiseGTE
- {
- template <typename Real>
- class ApprPolynomial2 : public ApprQuery<Real, std::array<Real, 2>>
- {
- public:
- // Initialize the model parameters to zero.
- ApprPolynomial2(int degree)
- :
- mDegree(degree),
- mSize(degree + 1),
- mParameters(mSize, (Real)0)
- {
- mXDomain[0] = std::numeric_limits<Real>::max();
- mXDomain[1] = -mXDomain[0];
- }
- // Basic fitting algorithm. See ApprQuery.h for the various Fit(...)
- // functions that you can call.
- virtual bool FitIndexed(
- size_t numObservations, std::array<Real, 2> const* observations,
- size_t numIndices, int const* indices) override
- {
- if (this->ValidIndices(numObservations, observations, numIndices, indices))
- {
- int s, i0, i1;
- // Compute the powers of x.
- int numSamples = static_cast<int>(numIndices);
- int twoDegree = 2 * mDegree;
- Array2<Real> xPower(twoDegree + 1, numSamples);
- for (s = 0; s < numSamples; ++s)
- {
- Real x = observations[indices[s]][0];
- mXDomain[0] = std::min(x, mXDomain[0]);
- mXDomain[1] = std::max(x, mXDomain[1]);
- xPower[s][0] = (Real)1;
- for (i0 = 1; i0 <= twoDegree; ++i0)
- {
- xPower[s][i0] = x * xPower[s][i0 - 1];
- }
- }
- // Matrix A is the Vandermonde matrix and vector B is the
- // right-hand side of the linear system A*X = B.
- GMatrix<Real> A(mSize, mSize);
- GVector<Real> B(mSize);
- for (i0 = 0; i0 <= mDegree; ++i0)
- {
- Real sum = (Real)0;
- for (s = 0; s < numSamples; ++s)
- {
- Real w = observations[indices[s]][1];
- sum += w * xPower[s][i0];
- }
- B[i0] = sum;
- for (i1 = 0; i1 <= mDegree; ++i1)
- {
- sum = (Real)0;
- for (s = 0; s < numSamples; ++s)
- {
- sum += xPower[s][i0 + i1];
- }
- A(i0, i1) = sum;
- }
- }
- // Solve for the polynomial coefficients.
- GVector<Real> coefficients = Inverse(A) * B;
- bool hasNonzero = false;
- for (int i = 0; i < mSize; ++i)
- {
- mParameters[i] = coefficients[i];
- if (coefficients[i] != (Real)0)
- {
- hasNonzero = true;
- }
- }
- return hasNonzero;
- }
- std::fill(mParameters.begin(), mParameters.end(), (Real)0);
- return false;
- }
- // Get the parameters for the best fit.
- std::vector<Real> const& GetParameters() const
- {
- return mParameters;
- }
- virtual size_t GetMinimumRequired() const override
- {
- return static_cast<size_t>(mSize);
- }
- // Compute the model error for the specified observation for the
- // current model parameters. The returned value for observation
- // (x0,w0) is |w(x0) - w0|, where w(x) is the fitted polynomial.
- virtual Real Error(std::array<Real, 2> const& observation) const override
- {
- Real w = Evaluate(observation[0]);
- Real error = std::fabs(w - observation[1]);
- return error;
- }
- virtual void CopyParameters(ApprQuery<Real, std::array<Real, 2>> const* input) override
- {
- auto source = dynamic_cast<ApprPolynomial2 const*>(input);
- if (source)
- {
- *this = *source;
- }
- }
- // Evaluate the polynomial. The domain interval is provided so you can
- // interpolate (x in domain) or extrapolate (x not in domain).
- std::array<Real, 2> const& GetXDomain() const
- {
- return mXDomain;
- }
- Real Evaluate(Real x) const
- {
- int i = mDegree;
- Real w = mParameters[i];
- while (--i >= 0)
- {
- w = mParameters[i] + w * x;
- }
- return w;
- }
- private:
- int mDegree, mSize;
- std::array<Real, 2> mXDomain;
- std::vector<Real> mParameters;
- };
- }
|