123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/LinearSystem.h>
- #include <Mathematics/Matrix.h>
- #include <Mathematics/Vector3.h>
- // Least-squares fit of a paraboloid to a set of point. The paraboloid is
- // of the form z = c0*x^2+c1*x*y+c2*y^2+c3*x+c4*y+c5. A successful fit is
- // indicated by return value of 'true'.
- //
- // Given a set of samples (x_i,y_i,z_i) for 0 <= i < N, and assuming
- // that the true values lie on a paraboloid
- // z = p0*x*x + p1*x*y + p2*y*y + p3*x + p4*y + p5 = Dot(P,Q(x,y))
- // where P = (p0,p1,p2,p3,p4,p5) and Q(x,y) = (x*x,x*y,y*y,x,y,1),
- // select P to minimize the sum of squared errors
- // E(P) = sum_{i=0}^{N-1} [Dot(P,Q_i)-z_i]^2
- // where Q_i = Q(x_i,y_i).
- //
- // The minimum occurs when the gradient of E is the zero vector,
- // grad(E) = 2 sum_{i=0}^{N-1} [Dot(P,Q_i)-z_i] Q_i = 0
- // Some algebra converts this to a system of 6 equations in 6 unknowns:
- // [(sum_{i=0}^{N-1} Q_i Q_i^t] P = sum_{i=0}^{N-1} z_i Q_i
- // The product Q_i Q_i^t is a product of the 6x1 matrix Q_i with the
- // 1x6 matrix Q_i^t, the result being a 6x6 matrix.
- //
- // Define the 6x6 symmetric matrix A = sum_{i=0}^{N-1} Q_i Q_i^t and the 6x1
- // vector B = sum_{i=0}^{N-1} z_i Q_i. The choice for P is the solution to
- // the linear system of equations A*P = B. The entries of A and B indicate
- // summations over the appropriate product of variables. For example,
- // s(x^3 y) = sum_{i=0}^{N-1} x_i^3 y_i.
- //
- // +- -++ + +- -+
- // | s(x^4) s(x^3 y) s(x^2 y^2) s(x^3) s(x^2 y) s(x^2) ||p0| |s(z x^2)|
- // | s(x^2 y^2) s(x y^3) s(x^2 y) s(x y^2) s(x y) ||p1| |s(z x y)|
- // | s(y^4) s(x y^2) s(y^3) s(y^2) ||p2| = |s(z y^2)|
- // | s(x^2) s(x y) s(x) ||p3| |s(z x) |
- // | s(y^2) s(y) ||p4| |s(z y) |
- // | s(1) ||p5| |s(z) |
- // +- -++ + +- -+
- namespace WwiseGTE
- {
- template <typename Real>
- class ApprParaboloid3
- {
- public:
- bool operator()(int numPoints, Vector3<Real> const* points, Real coefficients[6]) const
- {
- Matrix<6, 6, Real> A;
- Vector<6, Real> B;
- B.MakeZero();
- for (int i = 0; i < numPoints; i++)
- {
- Real x2 = points[i][0] * points[i][0];
- Real xy = points[i][0] * points[i][1];
- Real y2 = points[i][1] * points[i][1];
- Real zx = points[i][2] * points[i][0];
- Real zy = points[i][2] * points[i][1];
- Real x3 = points[i][0] * x2;
- Real x2y = x2 * points[i][1];
- Real xy2 = points[i][0] * y2;
- Real y3 = points[i][1] * y2;
- Real zx2 = points[i][2] * x2;
- Real zxy = points[i][2] * xy;
- Real zy2 = points[i][2] * y2;
- Real x4 = x2 * x2;
- Real x3y = x3 * points[i][1];
- Real x2y2 = x2 * y2;
- Real xy3 = points[i][0] * y3;
- Real y4 = y2 * y2;
- A(0, 0) += x4;
- A(0, 1) += x3y;
- A(0, 2) += x2y2;
- A(0, 3) += x3;
- A(0, 4) += x2y;
- A(0, 5) += x2;
- A(1, 2) += xy3;
- A(1, 4) += xy2;
- A(1, 5) += xy;
- A(2, 2) += y4;
- A(2, 4) += y3;
- A(2, 5) += y2;
- A(3, 3) += x2;
- A(3, 5) += points[i][0];
- A(4, 5) += points[i][1];
- B[0] += zx2;
- B[1] += zxy;
- B[2] += zy2;
- B[3] += zx;
- B[4] += zy;
- B[5] += points[i][2];
- }
- A(1, 0) = A(0, 1);
- A(1, 1) = A(0, 2);
- A(1, 3) = A(0, 4);
- A(2, 0) = A(0, 2);
- A(2, 1) = A(1, 2);
- A(2, 3) = A(1, 4);
- A(3, 0) = A(0, 3);
- A(3, 1) = A(1, 3);
- A(3, 2) = A(2, 3);
- A(3, 4) = A(1, 5);
- A(4, 0) = A(0, 4);
- A(4, 1) = A(1, 4);
- A(4, 2) = A(2, 4);
- A(4, 3) = A(3, 4);
- A(4, 4) = A(2, 5);
- A(5, 0) = A(0, 5);
- A(5, 1) = A(1, 5);
- A(5, 2) = A(2, 5);
- A(5, 3) = A(3, 5);
- A(5, 4) = A(4, 5);
- A(5, 5) = static_cast<Real>(numPoints);
- return LinearSystem<Real>().Solve(6, &A[0], &B[0], &coefficients[0]);
- }
- };
- }
|