123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.08.13
- #pragma once
- #include <Mathematics/ContScribeCircle2.h>
- #include <vector>
- // The ellipse is (x/a)^2 + (y/b)^2 = 1, but only the portion in the first
- // quadrant (x >= 0 and y >= 0) is approximated. Generate numArcs >= 2 arcs
- // by constructing points corresponding to the weighted averages of the
- // curvatures at the ellipse points (a,0) and (0,b). The returned input point
- // array has numArcs+1 elements and the returned input center and radius
- // arrays each have numArc elements. The arc associated with points[i] and
- // points[i+1] has center centers[i] and radius radii[i]. The algorithm
- // is described in
- // https://www.geometrictools.com/Documentation/ApproximateEllipse.pdf
- namespace WwiseGTE
- {
- // The function returns 'true' when the approximation succeeded, in which
- // case the output arrays are nonempty. If the 'numArcs' is smaller than
- // 2 or a == b or one of the calls to Circumscribe fails, the function
- // returns 'false'.
- template <typename Real>
- bool ApproximateEllipseByArcs(Real a, Real b, int numArcs,
- std::vector<Vector2<Real>>& points, std::vector<Vector2<Real>>& centers,
- std::vector<Real>& radii)
- {
- if (numArcs < 2 || a == b)
- {
- // At least 2 arcs are required. The ellipse cannot already be a
- // circle.
- points.clear();
- centers.clear();
- radii.clear();
- return false;
- }
- points.resize(numArcs + 1);
- centers.resize(numArcs);
- radii.resize(numArcs);
- // Compute intermediate ellipse quantities.
- Real a2 = a * a, b2 = b * b, ab = a * b;
- Real invB2mA2 = (Real)1 / (b2 - a2);
- // Compute the endpoints of the ellipse in the first quadrant. The
- // points are generated in counterclockwise order.
- points[0] = { a, (Real)0 };
- points[numArcs] = { (Real)0, b };
- // Compute the curvature at the endpoints. These are used when
- // computing the arcs.
- Real curv0 = a / b2;
- Real curv1 = b / a2;
- // Select the ellipse points based on curvature properties.
- Real invNumArcs = (Real)1 / numArcs;
- for (int i = 1; i < numArcs; ++i)
- {
- // The curvature at a new point is a weighted average of curvature
- // at the endpoints.
- Real weight1 = static_cast<Real>(i) * invNumArcs;
- Real weight0 = (Real)1 - weight1;
- Real curv = weight0 * curv0 + weight1 * curv1;
- // Compute point having this curvature.
- Real tmp = std::pow(ab / curv, (Real)2 / (Real)3);
- points[i][0] = a * std::sqrt(std::fabs((tmp - a2) * invB2mA2));
- points[i][1] = b * std::sqrt(std::fabs((tmp - b2) * invB2mA2));
- }
- // Compute the arc at (a,0).
- Circle2<Real> circle;
- Vector2<Real> const& p0 = points[0];
- Vector2<Real> const& p1 = points[1];
- if (!Circumscribe(Vector2<Real>{ p1[0], -p1[1] }, p0, p1, circle))
- {
- // This should not happen for the arc-fitting algorithm.
- points.clear();
- centers.clear();
- radii.clear();
- return false;
- }
- centers[0] = circle.center;
- radii[0] = circle.radius;
- // Compute arc at (0,b).
- int last = numArcs - 1;
- Vector2<Real> const& pNm1 = points[last];
- Vector2<Real> const& pN = points[numArcs];
- if (!Circumscribe(Vector2<Real>{ -pNm1[0], pNm1[1] }, pN, pNm1, circle))
- {
- // This should not happen for the arc-fitting algorithm.
- points.clear();
- centers.clear();
- radii.clear();
- return false;
- }
- centers[last] = circle.center;
- radii[last] = circle.radius;
- // Compute arcs at intermediate points between (a,0) and (0,b).
- for (int iM = 0, i = 1, iP = 2; i < last; ++iM, ++i, ++iP)
- {
- Circumscribe(points[iM], points[i], points[iP], circle);
- centers[i] = circle.center;
- radii[i] = circle.radius;
- }
- return true;
- }
- }
|