123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- // David Eberly, Geometric Tools, Redmond WA 98052
- // Copyright (c) 1998-2020
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
- // Version: 4.0.2019.09.26
- #pragma once
- #include <Mathematics/ArbitraryPrecision.h>
- #include <Mathematics/QFNumber.h>
- #include <cfenv>
- // The conversion functions here are used to obtain arbitrary-precision
- // approximations to rational numbers and to quadratic field numbers.
- // The arbitrary-precision arithmetic is described in
- // https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf
- // The quadratic field numbers and conversions are described in
- // https://www.geometrictools.com/Documentation/QuadraticFields.pdf
- namespace WwiseGTE
- {
- template <typename Rational>
- class APConversion
- {
- public:
- using QFN1 = QFNumber<Rational, 1>;
- using QFN2 = QFNumber<Rational, 2>;
- // Construction and destruction.
- APConversion(int32_t precision, uint32_t maxIterations)
- :
- mZero(0),
- mOne(1),
- mThree(3),
- mFive(5),
- mPrecision(precision),
- mMaxIterations(maxIterations),
- mThreshold(std::ldexp(mOne, -mPrecision))
- {
- LogAssert(precision > 0, "Invalid precision.");
- LogAssert(maxIterations > 0, "Invalid maximum iterations.");
- }
- ~APConversion()
- {
- }
- // Member access.
- void SetPrecision(int32_t precision)
- {
- LogAssert(precision > 0, "Invalid precision.");
- mPrecision = precision;
- mThreshold = std::ldexp(mOne, -mPrecision);
- }
- void SetMaxIterations(uint32_t maxIterations)
- {
- LogAssert(maxIterations > 0, "Invalid maximum iterations.");
- mMaxIterations = maxIterations;
- }
- inline int32_t GetPrecision() const
- {
- return mPrecision;
- }
- inline uint32_t GetMaxIterations() const
- {
- return mMaxIterations;
- }
- // Disallow copying and moving.
- APConversion(APConversion const&) = delete;
- APConversion(APConversion&&) = delete;
- APConversion& operator=(APConversion const&) = delete;
- APConversion& operator=(APConversion&&) = delete;
- // The input a^2 is rational, but a itself is usually irrational,
- // although a rational value is allowed. Compute a bounding interval
- // for the root, aMin <= a <= aMax, where the endpoints are both
- // within the specified precision.
- uint32_t EstimateSqrt(Rational const& aSqr, Rational& aMin, Rational& aMax)
- {
- // Factor a^2 = r^2 * 2^e, where r^2 in [1/2,1). Compute s^2 and
- // the exponent used to generate the estimate of sqrt(a^2).
- Rational sSqr;
- int exponentA;
- PreprocessSqr(aSqr, sSqr, exponentA);
- // Use the FPU to estimate s = sqrt(sSqr) to 53-bit precision with
- // rounding up. Multiply by the appropriate exponent to obtain
- // upper bound aMax > a.
- aMax = GetMaxOfSqrt(sSqr, exponentA);
- // Compute a lower bound aMin < a.
- aMin = aSqr / aMax;
- // Compute Newton iterates until convergence. The estimate closest
- // to a is aMin with aMin <= a <= aMax and a - aMin <= aMax - a.
- uint32_t iterate;
- for (iterate = 1; iterate <= mMaxIterations; ++iterate)
- {
- if (aMax - aMin < mThreshold)
- {
- break;
- }
- // Compute the average aMax = (aMin + aMax) / 2. Round up
- // to twice the precision to avoid quadratic growth in the
- // number of bits and to ensure that aMin can increase.
- aMax = std::ldexp(aMin + aMax, -1);
- Convert(aMax, 2 * mPrecision, FE_UPWARD, aMax);
- aMin = aSqr / aMax;
- }
- return iterate;
- }
- // Compute an estimate of the root when you do not need a bounding
- // interval.
- uint32_t EstimateSqrt(Rational const& aSqr, Rational& a)
- {
- // Compute a bounding interval aMin <= a <= aMax.
- Rational aMin, aMax;
- uint32_t numIterates = EstimateSqrt(aSqr, aMin, aMax);
- // Use the average of the interval endpoints as the estimate.
- a = std::ldexp(aMin + aMax, -1);
- return numIterates;
- }
- uint32_t EstimateApB(Rational const& aSqr, Rational const& bSqr,
- Rational& tMin, Rational& tMax)
- {
- // Factor a^2 = r^2 * 2^e, where r^2 in [1/2,1). Compute u^2 and
- // the exponent used to generate the estimate of sqrt(a^2).
- Rational uSqr;
- int32_t exponentA;
- PreprocessSqr(aSqr, uSqr, exponentA);
- // Factor b^2 = s^2 * 2^e, where s^2 in [1/2,1). Compute v^2 and
- // the exponent used to generate the estimate of sqrt(b^2).
- Rational vSqr;
- int32_t exponentB;
- PreprocessSqr(bSqr, vSqr, exponentB);
- // Use the FPU to estimate u = sqrt(u^2) and v = sqrt(v^2) to
- // 53 bits of precision with rounding up. Multiply by the
- // appropriate exponents to obtain upper bounds aMax > a and
- // bMax > b. This ensures tMax = aMax + bMax > a + b.
- Rational aMax = GetMaxOfSqrt(uSqr, exponentA);
- Rational bMax = GetMaxOfSqrt(vSqr, exponentB);
- tMax = aMax + bMax;
- // Compute a lower bound tMin < a + b.
- Rational a2pb2 = aSqr + bSqr;
- Rational a2mb2 = aSqr - bSqr;
- Rational a2mb2Sqr = a2mb2 * a2mb2;
- Rational tMaxSqr = tMax * tMax;
- tMin = (a2pb2 * tMaxSqr - a2mb2Sqr) / (tMax * (tMaxSqr - a2pb2));
- // Compute Newton iterates until convergence. The estimate closest
- // to a + b is tMin with tMin < a + b < tMax and
- // (a + b) - tMin < tMax - (a + b).
- uint32_t iterate;
- for (iterate = 1; iterate <= mMaxIterations; ++iterate)
- {
- if (tMax - tMin < mThreshold)
- {
- break;
- }
- // Compute the weighted average tMax = (3*tMin + tMax) / 4.
- // Round up to twice the precision to avoid quadratic growth
- // in the number of bits and to ensure that tMin can increase.
- tMax = std::ldexp(mThree * tMax + tMin, -2);
- Convert(tMax, 2 * mPrecision, FE_UPWARD, tMax);
- tMaxSqr = tMax * tMax;
- tMin = (a2pb2 * tMaxSqr - a2mb2Sqr) / (tMax * (tMaxSqr - a2pb2));
- }
- return iterate;
- }
- uint32_t EstimateAmB(Rational const& aSqr, Rational const& bSqr,
- Rational& tMin, Rational& tMax)
- {
- // The return value of the function.
- uint32_t iterate = 0;
- // Compute various quantities that are used later in the code.
- Rational a2tb2 = aSqr * bSqr; // a^2 * b^2
- Rational a2pb2 = aSqr + bSqr; // a^2 + b^2
- Rational a2mb2 = aSqr - bSqr; // a^2 - b^2
- Rational a2mb2Sqr = a2mb2 * a2mb2; // (a^2 - b^2)^2
- Rational twoa2pb2 = std::ldexp(a2pb2, 1); // 2 * (a^2 + b^2)
- // Factor a^2 = r^2 * 2^e, where r^2 in [1/2,1). Compute u^2 and
- // the exponent used to generate the estimate of sqrt(a^2).
- Rational uSqr;
- int32_t exponentA;
- PreprocessSqr(aSqr, uSqr, exponentA);
- // Factor b^2 = s^2 * 2^e, where s^2 in [1/2,1). Compute v^2 and
- // the exponent used to generate the estimate of sqrt(b^2).
- Rational vSqr;
- int32_t exponentB;
- PreprocessSqr(bSqr, vSqr, exponentB);
- // Compute the sign of f''(a-b)/8 = a^2 - 3*a*b + b^2. It can be
- // shown that Sign(a^2-3*a*b+b^2) = Sign(a^4-7*a^2*b^2+b^4) =
- // Sign((a^2-b^2)^2-5*a^2*b^2).
- Rational signSecDer = a2mb2Sqr - mFive * a2tb2;
- // Local variables shared by the two main blocks of code.
- Rational aMin, aMax, bMin, bMax, tMinSqr, tMaxSqr, tMid, tMidSqr, f;
- if (signSecDer > mZero)
- {
- // Choose an initial guess tMin < a-b. Use the FPU to
- // estimate u = sqrt(u^2) and v = sqrt(v^2) to 53 bits of
- // precision with specified rounding. Multiply by the
- // appropriate exponents to obtain tMin = aMin - bMax < a-b.
- aMin = GetMinOfSqrt(uSqr, exponentA);
- bMax = GetMaxOfSqrt(vSqr, exponentB);
- tMin = aMin - bMax;
- // When a-b is nearly zero, it is possible the lower bound is
- // negative. Clamp tMin to zero to stay on the nonnegative
- // t-axis where the f"-positive basin is.
- if (tMin < mZero)
- {
- tMin = mZero;
- }
- // Test whether tMin is in the positive f"(t) basin containing
- // a-b. If it is not, compute a tMin that is in the basis. The
- // sign test is applied to f"(t)/4 = 3*t^2 - (a^2+b^2).
- tMinSqr = tMin * tMin;
- signSecDer = mThree * tMinSqr - a2pb2;
- if (signSecDer < mZero)
- {
- // The initial guess satisfies f"(tMin) < 0. Compute an
- // upper bound tMax > a-b and bisect [tMin,tMax] until
- // either the t-value is an estimate to a-b within the
- // specified precision or until f"(t) >= 0 and f(t) >= 0.
- // In the latter case, continue on to Newton's method,
- // which is then guaranteed to converge.
- aMax = GetMaxOfSqrt(uSqr, exponentA);
- bMin = GetMinOfSqrt(vSqr, exponentB);
- tMax = aMax - bMin;
- for (iterate = 1; iterate <= mMaxIterations; ++iterate)
- {
- if (tMax - tMin < mThreshold)
- {
- return iterate;
- }
- tMid = std::ldexp(tMin + tMax, -1);
- tMidSqr = tMid * tMid;
- signSecDer = mThree * tMidSqr - a2pb2;
- if (signSecDer >= mZero)
- {
- f = tMidSqr * (tMidSqr - twoa2pb2) + a2mb2Sqr;
- if (f >= mZero)
- {
- tMin = tMid;
- tMinSqr = tMidSqr;
- break;
- }
- else
- {
- // Round up to twice the precision to avoid
- // quadratic growth in the number of bits.
- tMax = tMid;
- Convert(tMax, 2 * mPrecision, FE_UPWARD, tMax);
- }
- }
- else
- {
- // Round down to twice the precision to avoid
- // quadratic growth in the number of bits.
- tMin = tMid;
- Convert(tMin, 2 * mPrecision, FE_DOWNWARD, tMin);
- }
- }
- }
- // Compute an upper bound tMax > a-b.
- tMax = (a2pb2 * tMinSqr - a2mb2Sqr) / (tMin * (tMinSqr - a2pb2));
- // Compute Newton iterates until convergence. The estimate
- // closest to a-b is tMax with tMin < a-b < tMax and
- // tMax - (a-b) < (a-b) - tMin.
- for (iterate = 1; iterate <= mMaxIterations; ++iterate)
- {
- if (tMax - tMin < mThreshold)
- {
- break;
- }
- // Compute the weighted average tMin = (3*tMin+tMax)/4.
- // Round down to twice the precision to avoid quadratic
- // growth in the number of bits and to ensure that tMax
- // can decrease.
- tMin = std::ldexp(mThree * tMin + tMax, -2);
- Convert(tMin, 2 * mPrecision, FE_DOWNWARD, tMin);
- tMinSqr = tMin * tMin;
- tMax = (a2pb2 * tMinSqr - a2mb2Sqr) / (tMin * (tMinSqr - a2pb2));
- }
- return iterate;
- }
- if (signSecDer < mZero)
- {
- // Choose an initial guess tMax > a-b. Use the FPU to
- // estimate u = sqrt(u^2) and v = sqrt(v^2) to 53 bits of
- // precision with specified rounding. Multiply by the
- // appropriate exponents to obtain tMax = aMax - bMin > a-b.
- aMax = GetMaxOfSqrt(uSqr, exponentA);
- bMin = GetMinOfSqrt(vSqr, exponentB);
- tMax = aMax - bMin;
- // Test whether tMax is in the negative f"(t) basin containing
- // a-b. If it is not, compute a tMax that is in the basis. The
- // sign test is applied to f"(t)/4 = 3*t^2 - (a^2+b^2).
- tMaxSqr = tMax * tMax;
- signSecDer = mThree * tMaxSqr - a2pb2;
- if (signSecDer > mZero)
- {
- // The initial guess satisfies f"(tMax) > 0. Compute a
- // lower bound tMin < a-b and bisect [tMin,tMax] until
- // either the t-value is an estimate to a-b within the
- // specified precision or until f"(t) <= 0 and f(t) <= 0.
- // In the latter case, continue on to Newton's method,
- // which is then guaranteed to converge.
- aMin = GetMinOfSqrt(uSqr, exponentA);
- bMax = GetMaxOfSqrt(vSqr, exponentB);
- tMin = aMin - bMax;
- for (iterate = 1; iterate <= mMaxIterations; ++iterate)
- {
- if (tMax - tMin < mThreshold)
- {
- return iterate;
- }
- tMid = std::ldexp(tMin + tMax, -1);
- tMidSqr = tMid * tMid;
- signSecDer = mThree * tMidSqr - a2pb2;
- if (signSecDer <= mZero)
- {
- f = tMidSqr * (tMidSqr - twoa2pb2) + a2mb2Sqr;
- if (f <= mZero)
- {
- tMax = tMid;
- tMaxSqr = tMidSqr;
- break;
- }
- else
- {
- // Round down to twice the precision to avoid
- // quadratic growth in the number of bits.
- tMin = tMid;
- Convert(tMin, 2 * mPrecision, FE_DOWNWARD, tMin);
- }
- }
- else
- {
- // Round up to twice the precision to avoid
- // quadratic growth in the number of bits.
- tMax = tMid;
- Convert(tMax, 2 * mPrecision, FE_UPWARD, tMax);
- }
- }
- }
- // Compute a lower bound tMin < a-b.
- tMin = (a2pb2 * tMaxSqr - a2mb2Sqr) / (tMax * (tMaxSqr - a2pb2));
- // Compute Newton iterates until convergence. The estimate
- // closest to a-b is tMin with tMin < a - b < tMax and
- // (a-b) - tMin < tMax - (a-b).
- for (iterate = 1; iterate <= mMaxIterations; ++iterate)
- {
- if (tMax - tMin < mThreshold)
- {
- break;
- }
- // Compute the weighted average tMax = (3*tMax+tMin)/4.
- // Round up to twice the precision to avoid quadratic
- // growth in the number of bits and to ensure that tMin
- // can increase.
- tMax = std::ldexp(mThree * tMax + tMin, -2);
- Convert(tMax, 2 * mPrecision, FE_UPWARD, tMax);
- tMaxSqr = tMax * tMax;
- tMin = (a2pb2 * tMaxSqr - a2mb2Sqr) / (tMax * (tMaxSqr - a2pb2));
- }
- return iterate;
- }
- // The sign of the second derivative is Sign(a^4-7*a^2*b^2+b^4)
- // and cannot be zero. Define rational r = a^2/b^2 so that
- // a^4-7*a^2*b^2+b^4 = 0. This implies r^2 - 7*r^2 + 1 = 0. The
- // irrational roots are r = (7 +- sqrt(45))/2, which is a
- // contradiction.
- LogError("This second derivative cannot be zero at a-b.");
- }
- // Compute a bounding interval for the root, qMin <= q <= qMax, where
- // the endpoints are both within the specified precision.
- uint32_t Estimate(QFN1 const& q, Rational& qMin, Rational& qMax)
- {
- Rational const& x = q.x[0];
- Rational const& y = q.x[1];
- Rational const& d = q.d;
- uint32_t numIterates;
- if (d != mZero && y != mZero)
- {
- Rational aSqr = y * y * d;
- numIterates = EstimateSqrt(aSqr, qMin, qMax);
- if (y > mZero)
- {
- qMin = x + qMin;
- qMax = x + qMax;
- }
- else
- {
- Rational diff = x - qMax;
- qMax = x - qMin;
- qMin = diff;
- }
- }
- else
- {
- numIterates = 0;
- qMin = x;
- qMax = x;
- }
- return numIterates;
- }
- // Compute an estimate of the root when you do not need a bounding
- // interval.
- uint32_t Estimate(QFN1 const& q, Rational& qEstimate)
- {
- // Compute a bounding interval qMin <= q <= qMax.
- Rational qMin, qMax;
- uint32_t numIterates = Estimate(q, qMin, qMax);
- // Use the average of the interval endpoints as the estimate.
- qEstimate = std::ldexp(qMin + qMax, -1);
- return numIterates;
- }
- private:
- void PreprocessSqr(Rational const& aSqr, Rational& rSqr, int& exponentA)
- {
- // Factor a^2 = r^2 * 2^e, where r^2 in [1/2,1).
- int32_t exponentASqr;
- rSqr = std::frexp(aSqr, &exponentASqr);
- if (exponentASqr & 1) // odd exponent
- {
- // a = sqrt(2*r^2) * 2^{(e-1)/2}
- exponentA = (exponentASqr - 1) / 2;
- rSqr = std::ldexp(rSqr, 1); // = 2*rSqr
- // rSqr in [1,2)
- }
- else // even exponent
- {
- // a = sqrt(r^2) * 2^{e/2}
- exponentA = exponentASqr / 2;
- // rSqr in [1/2,1)
- }
- }
- Rational GetMinOfSqrt(Rational const& rSqr, int exponent)
- {
- double lowerRSqr;
- Convert(rSqr, FE_DOWNWARD, lowerRSqr);
- int saveRoundingMode = std::fegetround();
- std::fesetround(FE_DOWNWARD);
- Rational aMin = std::sqrt(lowerRSqr);
- std::fesetround(saveRoundingMode);
- aMin = std::ldexp(aMin, exponent);
- return aMin;
- }
- Rational GetMaxOfSqrt(Rational const& rSqr, int exponent)
- {
- double upperRSqr;
- Convert(rSqr, FE_UPWARD, upperRSqr);
- int saveRoundingMode = std::fegetround();
- std::fesetround(FE_UPWARD);
- Rational aMax = std::sqrt(upperRSqr);
- std::fesetround(saveRoundingMode);
- aMax = std::ldexp(aMax, exponent);
- return aMax;
- }
- Rational const mZero, mOne, mThree, mFive;
- int32_t mPrecision;
- uint32_t mMaxIterations;
- Rational mThreshold;
- };
- }
|