/******************************************************************************* The content of this file includes portions of the AUDIOKINETIC Wwise Technology released in source code form as part of the SDK installer package. Commercial License Usage Licensees holding valid commercial licenses to the AUDIOKINETIC Wwise Technology may use this file in accordance with the end user license agreement provided with the software or, alternatively, in accordance with the terms contained in a written agreement between you and Audiokinetic Inc. Apache License Usage Alternatively, this file may be used under the Apache License, Version 2.0 (the "Apache License"); you may not use this file except in compliance with the Apache License. You may obtain a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the Apache License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the Apache License for the specific language governing permissions and limitations under the License. Copyright (c) 2023 Audiokinetic Inc. *******************************************************************************/ #pragma once // Length of delay line is mapped on 4 frames boundary (i.e. may not be suited for reverberation for example) // This is not a delay line implementation, but rather just some services for memory managment related // to specific delay line execution needs as detailed by clients #include #include #include #include #include namespace AK { namespace DSP { template < class T_SAMPLETYPE > class CAkDelayLineMemory { public: CAkDelayLineMemory() : m_ppDelay( NULL ) , m_uDelayLineLength( 0 ) , m_uOffset( 0 ) , m_uNumChannels( 0 ) { } AKRESULT Init( AK::IAkPluginMemAlloc * in_pAllocator, AkUInt32 in_uDelayLineLength, AkUInt32 in_uNumChannels, bool in_bRestrictDelayLengthSIMD = true ) { m_ppDelay = (T_SAMPLETYPE**)AK_PLUGIN_ALLOC( in_pAllocator, sizeof(T_SAMPLETYPE *) * in_uNumChannels ); if ( m_ppDelay == NULL ) return AK_InsufficientMemory; AkZeroMemSmall( m_ppDelay, sizeof(T_SAMPLETYPE *) * in_uNumChannels ); m_uNumChannels = in_uNumChannels; if (in_bRestrictDelayLengthSIMD) { // Align delay length on 4 frame boundary to simplify DMA and SIMD alignement m_uDelayLineLength = AK_ALIGN_TO_NEXT_BOUNDARY( in_uDelayLineLength, 4 ); } else { m_uDelayLineLength = in_uDelayLineLength; } m_uOffset = 0; if ( m_uDelayLineLength ) { for ( AkUInt32 i = 0; i < m_uNumChannels; i++ ) { m_ppDelay[i] = (T_SAMPLETYPE*)AK_PLUGIN_ALLOC( in_pAllocator, sizeof(T_SAMPLETYPE) * m_uDelayLineLength ); if ( m_ppDelay[i] == NULL ) return AK_InsufficientMemory; } } return AK_Success; } void Term( AK::IAkPluginMemAlloc * in_pAllocator ) { if ( m_ppDelay ) { for ( AkUInt32 i = 0; i < m_uNumChannels; i++ ) { if ( m_ppDelay[i] ) { AK_PLUGIN_FREE( in_pAllocator, m_ppDelay[i] ); m_ppDelay[i] = NULL; } } AK_PLUGIN_FREE( in_pAllocator, m_ppDelay ); } m_uDelayLineLength = 0; m_uNumChannels = 0; } void Reset( ) { if ( m_uDelayLineLength ) { for ( AkUInt32 i = 0; i < m_uNumChannels; i++ ) { if (m_ppDelay[i]) AkZeroMemLarge( (void*) m_ppDelay[i], m_uDelayLineLength*sizeof(T_SAMPLETYPE) ); } } m_uOffset = 0; } AkForceInline AkUInt32 GetCurrentOffset() { return m_uOffset; } AkForceInline void SetCurrentOffset( AkUInt32 in_uOffset ) { m_uOffset = in_uOffset; } AkForceInline AkUInt32 GetDelayLength() { return m_uDelayLineLength; } T_SAMPLETYPE * GetCurrentPointer( AkUInt32 in_uOffset, AkUInt32 in_uChannelIndex ) { return m_ppDelay[in_uChannelIndex] + in_uOffset; } public: T_SAMPLETYPE ** m_ppDelay; // Delay lines for each channel AkUInt32 m_uDelayLineLength; // Total delay line length AkUInt32 m_uOffset; // Current delay line write position AkUInt32 m_uNumChannels; // Number of delayed channels }; } // namespace DSP } // namespace AK