// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include #include #include #include namespace WwiseGTE { template class RectangleManager { public: // Construction. RectangleManager(std::vector>& rectangles) : mRectangles(rectangles) { Initialize(); } // No default construction, copy construction, or assignment are // allowed. RectangleManager() = delete; RectangleManager(RectangleManager const&) = delete; RectangleManager& operator=(RectangleManager const&) = delete; // This function is called by the constructor and does the // sort-and-sweep to initialize the update system. However, if you // add or remove items from the array of rectangles after the // constructor call, you will need to call this function once before // you start the multiple calls of the update function. void Initialize() { // Get the rectangle endpoints. int intrSize = static_cast(mRectangles.size()), endpSize = 2 * intrSize; mXEndpoints.resize(endpSize); mYEndpoints.resize(endpSize); for (int i = 0, j = 0; i < intrSize; ++i) { mXEndpoints[j].type = 0; mXEndpoints[j].value = mRectangles[i].min[0]; mXEndpoints[j].index = i; mYEndpoints[j].type = 0; mYEndpoints[j].value = mRectangles[i].min[1]; mYEndpoints[j].index = i; ++j; mXEndpoints[j].type = 1; mXEndpoints[j].value = mRectangles[i].max[0]; mXEndpoints[j].index = i; mYEndpoints[j].type = 1; mYEndpoints[j].value = mRectangles[i].max[1]; mYEndpoints[j].index = i; ++j; } // Sort the rectangle endpoints. std::sort(mXEndpoints.begin(), mXEndpoints.end()); std::sort(mYEndpoints.begin(), mYEndpoints.end()); // Create the interval-to-endpoint lookup tables. mXLookup.resize(endpSize); mYLookup.resize(endpSize); for (int j = 0; j < endpSize; ++j) { mXLookup[2 * mXEndpoints[j].index + mXEndpoints[j].type] = j; mYLookup[2 * mYEndpoints[j].index + mYEndpoints[j].type] = j; } // Active set of rectangles (stored by index in array). std::set active; // Set of overlapping rectangles (stored by pairs of indices in // array). mOverlap.clear(); // Sweep through the endpoints to determine overlapping // x-intervals. for (int i = 0; i < endpSize; ++i) { Endpoint& endpoint = mXEndpoints[i]; int index = endpoint.index; if (endpoint.type == 0) // an interval 'begin' value { // In the 1D problem, the current interval overlaps with // all the active intervals. In 2D we also need to check // for y-overlap. for (auto activeIndex : active) { // Rectangles activeIndex and index overlap in the // x-dimension. Test for overlap in the y-dimension. AlignedBox2 const& r0 = mRectangles[activeIndex]; AlignedBox2 const& r1 = mRectangles[index]; if (r0.max[1] >= r1.min[1] && r0.min[1] <= r1.max[1]) { if (activeIndex < index) { mOverlap.insert(EdgeKey(activeIndex, index)); } else { mOverlap.insert(EdgeKey(index, activeIndex)); } } } active.insert(index); } else // an interval 'end' value { active.erase(index); } } } // After the system is initialized, you can move the rectangles using // this function. It is not enough to modify the input array of // rectangles because the endpoint values stored internally by this // class must also change. You can also retrieve the current // rectangles information. void SetRectangle(int i, AlignedBox2 const& rectangle) { mRectangles[i] = rectangle; mXEndpoints[mXLookup[2 * i]].value = rectangle.min[0]; mXEndpoints[mXLookup[2 * i + 1]].value = rectangle.max[0]; mYEndpoints[mYLookup[2 * i]].value = rectangle.min[1]; mYEndpoints[mYLookup[2 * i + 1]].value = rectangle.max[1]; } inline void GetRectangle(int i, AlignedBox2& rectangle) const { rectangle = mRectangles[i]; } // When you are finished moving rectangles, call this function to // determine the overlapping rectangles. An incremental update is // applied to determine the new set of overlapping rectangles. void Update() { InsertionSort(mXEndpoints, mXLookup); InsertionSort(mYEndpoints, mYLookup); } // If (i,j) is in the overlap set, then rectangle i and rectangle j // are overlapping. The indices are those for the the input array. // The set elements (i,j) are stored so that i < j. inline std::set> const& GetOverlap() const { return mOverlap; } private: class Endpoint { public: Real value; // endpoint value int type; // '0' if interval min, '1' if interval max. int index; // index of interval containing this endpoint // Support for sorting of endpoints. bool operator<(Endpoint const& endpoint) const { if (value < endpoint.value) { return true; } if (value > endpoint.value) { return false; } return type < endpoint.type; } }; void InsertionSort(std::vector& endpoint, std::vector& lookup) { // Apply an insertion sort. Under the assumption that the // rectangles have not changed much since the last call, the // endpoints are nearly sorted. The insertion sort should be very // fast in this case. TIQuery, AlignedBox2> query; int endpSize = static_cast(endpoint.size()); for (int j = 1; j < endpSize; ++j) { Endpoint key = endpoint[j]; int i = j - 1; while (i >= 0 && key < endpoint[i]) { Endpoint e0 = endpoint[i]; Endpoint e1 = endpoint[i + 1]; // Update the overlap status. if (e0.type == 0) { if (e1.type == 1) { // The 'b' of interval E0.index was smaller than // the 'e' of interval E1.index, and the intervals // *might have been* overlapping. Now 'b' and 'e' // are swapped, and the intervals cannot overlap. // Remove the pair from the overlap set. The // removal operation needs to find the pair and // erase it if it exists. Finding the pair is the // expensive part of the operation, so there is no // real time savings in testing for existence // first, then deleting if it does. mOverlap.erase(EdgeKey(e0.index, e1.index)); } } else { if (e1.type == 0) { // The 'b' of interval E1.index was larger than // the 'e' of interval E0.index, and the intervals // were not overlapping. Now 'b' and 'e' are // swapped, and the intervals *might be* // overlapping. Determine if they are overlapping // and then insert. if (query(mRectangles[e0.index], mRectangles[e1.index]).intersect) { mOverlap.insert(EdgeKey(e0.index, e1.index)); } } } // Reorder the items to maintain the sorted list. endpoint[i] = e1; endpoint[i + 1] = e0; lookup[2 * e1.index + e1.type] = i; lookup[2 * e0.index + e0.type] = i + 1; --i; } endpoint[i + 1] = key; lookup[2 * key.index + key.type] = i + 1; } } std::vector>& mRectangles; std::vector mXEndpoints, mYEndpoints; std::set> mOverlap; // The intervals are indexed 0 <= i < n. The endpoint array has 2*n // entries. The original 2*n interval values are ordered as // b[0], e[0], b[1], e[1], ..., b[n-1], e[n-1] // When the endpoint array is sorted, the mapping between interval // values and endpoints is lost. In order to modify interval values // that are stored in the endpoint array, we need to maintain the // mapping. This is done by the following lookup table of 2*n // entries. The value mLookup[2*i] is the index of b[i] in the // endpoint array. The value mLookup[2*i+1] is the index of e[i] // in the endpoint array. std::vector mXLookup, mYLookup; }; }