// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include #include #include // The intervals are of the form [t0,t1], [t0,+infinity) or (-infinity,t1]. // Degenerate intervals are allowed (t0 = t1). The queries do not perform // validation on the input intervals to test whether t0 <= t1. namespace WwiseGTE { template class TIQuery, std::array> { public: // The query tests overlap, whether a single point or an entire // interval. struct Result { bool intersect; // Dynamic queries (intervals moving with constant speeds). If // 'intersect' is true, the contact times are valid and // 0 <= firstTime <= lastTime, firstTime <= maxTime // If 'intersect' is false, there are two cases reported. If the // intervals will intersect at firstTime > maxTime, the contact // times are reported just as when 'intersect' is true. However, // if the intervals will not intersect, then firstTime and // lastTime are both set to zero (invalid because 'intersect' is // false). Real firstTime, lastTime; }; // Static query. The firstTime and lastTime values are invalid // regardless of the value of 'intersect'. Result operator()(std::array const& interval0, std::array const& interval1) { Result result; result.intersect = (interval0[0] <= interval1[1] && interval0[1] >= interval1[0]); result.firstTime = (Real)0; result.lastTime = (Real)0; return result; } // Static queries where at least one interval is semiinfinite. The // two types of semiinfinite intervals are [a,+infinity), which I call // a positive-infinite interval, and (-infinity,a], which I call a // negative-infinite interval. Result operator()(std::array const& finite, Real const& a, bool isPositiveInfinite) { Result result; result.firstTime = (Real)0; result.lastTime = (Real)0; if (isPositiveInfinite) { result.intersect = (finite[1] >= a); } else // is negative-infinite { result.intersect = (finite[0] <= a); } return result; } Result operator()(Real const& a0, bool isPositiveInfinite0, Real const& a1, bool isPositiveInfinite1) { Result result; result.firstTime = (Real)0; result.lastTime = (Real)0; if (isPositiveInfinite0) { if (isPositiveInfinite1) { result.intersect = true; } else // interval1 is negative-infinite { result.intersect = (a0 <= a1); } } else // interval0 is negative-infinite { if (isPositiveInfinite1) { result.intersect = (a0 >= a1); } else // interval1 is negative-infinite { result.intersect = true; } } return result; } // Dynamic query. Current time is 0, maxTime > 0 is required. Result operator()(Real maxTime, std::array const& interval0, Real speed0, std::array const& interval1, Real speed1) { Result result; if (interval0[1] < interval1[0]) { // interval0 initially to the left of interval1. Real diffSpeed = speed0 - speed1; if (diffSpeed > (Real)0) { // The intervals must move towards each other. 'intersect' // is true when the intervals will intersect by maxTime. Real diffPos = interval1[0] - interval0[1]; Real invDiffSpeed = (Real)1 / diffSpeed; result.intersect = (diffPos <= maxTime * diffSpeed); result.firstTime = diffPos * invDiffSpeed; result.lastTime = (interval1[1] - interval0[0]) * invDiffSpeed; return result; } } else if (interval0[0] > interval1[1]) { // interval0 initially to the right of interval1. Real diffSpeed = speed1 - speed0; if (diffSpeed > (Real)0) { // The intervals must move towards each other. 'intersect' // is true when the intervals will intersect by maxTime. Real diffPos = interval0[0] - interval1[1]; Real invDiffSpeed = (Real)1 / diffSpeed; result.intersect = (diffPos <= maxTime * diffSpeed); result.firstTime = diffPos * invDiffSpeed; result.lastTime = (interval0[1] - interval1[0]) * invDiffSpeed; return result; } } else { // The intervals are initially intersecting. result.intersect = true; result.firstTime = (Real)0; if (speed1 > speed0) { result.lastTime = (interval0[1] - interval1[0]) / (speed1 - speed0); } else if (speed1 < speed0) { result.lastTime = (interval1[1] - interval0[0]) / (speed0 - speed1); } else { result.lastTime = std::numeric_limits::max(); } return result; } result.intersect = false; result.firstTime = (Real)0; result.lastTime = (Real)0; return result; } }; template class FIQuery, std::array> { public: // The query finds overlap, whether a single point or an entire // interval. struct Result { Result() : intersect(false), numIntersections(0), overlap{ (Real)0, (Real)0 }, type(isEmpty), firstTime((Real)0), lastTime((Real)0) { } bool intersect; // Static queries (no motion of intervals over time). The number // of number of intersections is 0 (no overlap), 1 (intervals are // just touching), or 2 (intervals overlap in an interval). If // 'intersect' is false, numIntersections is 0 and 'overlap' is // set to [0,0]. If 'intersect' is true, numIntersections is // 1 or 2. When 1, 'overlap' is set to [x,x], which is degenerate // and represents the single intersection point x. When 2, // 'overlap' is the interval of intersection. int numIntersections; std::array overlap; // No intersection. static int const isEmpty = 0; // Intervals touch at an endpoint, [t0,t0]. static int const isPoint = 1; // Finite-length interval of intersection, [t0,t1]. static int const isFinite = 2; // Smiinfinite interval of intersection, [t0,+infinity). The // result.overlap[0] is t0 and result.overlap[1] is +1 as a // message that the right endpoint is +infinity (you still need // the result.type to know this interpretation). static int const isPositiveInfinite = 3; // Semiinfinite interval of intersection, (-infinity,t1]. The // result.overlap[0] is =1 as a message that the left endpoint is // -infinity (you still need the result.type to know this // interpretation). The result.overlap[1] is t1. static int const isNegativeInfinite = 4; // The dynamic queries all set the type to isDynamicQuery because // the queries look for time of first and last contact. static int const isDynamicQuery = 5; // The type is one of isEmpty, isPoint, isFinite, // isPositiveInfinite, isNegativeInfinite or isDynamicQuery. int type; // Dynamic queries (intervals moving with constant speeds). If // 'intersect' is true, the contact times are valid and // 0 <= firstTime <= lastTime, firstTime <= maxTime // If 'intersect' is false, there are two cases reported. If the // intervals will intersect at firstTime > maxTime, the contact // times are reported just as when 'intersect' is true. However, // if the intervals will not intersect, then firstTime and // lastTime are both set to zero (invalid because 'intersect' is // false). Real firstTime, lastTime; }; // Static query. Result operator()(std::array const& interval0, std::array const& interval1) { Result result; if (interval0[1] < interval1[0] || interval0[0] > interval1[1]) { result.numIntersections = 0; result.overlap[0] = (Real)0; result.overlap[1] = (Real)0; result.type = Result::isEmpty; } else if (interval0[1] > interval1[0]) { if (interval0[0] < interval1[1]) { result.overlap[0] = (interval0[0] < interval1[0] ? interval1[0] : interval0[0]); result.overlap[1] = (interval0[1] > interval1[1] ? interval1[1] : interval0[1]); if (result.overlap[0] < result.overlap[1]) { result.numIntersections = 2; result.type = Result::isFinite; } else { result.numIntersections = 1; result.type = Result::isPoint; } } else // interval0[0] == interval1[1] { result.numIntersections = 1; result.overlap[0] = interval0[0]; result.overlap[1] = result.overlap[0]; result.type = Result::isPoint; } } else // interval0[1] == interval1[0] { result.numIntersections = 1; result.overlap[0] = interval0[1]; result.overlap[1] = result.overlap[0]; result.type = Result::isPoint; } result.intersect = (result.numIntersections > 0); return result; } // Static queries where at least one interval is semiinfinite. The // two types of semiinfinite intervals are [a,+infinity), which I call // a positive-infinite interval, and (-infinity,a], which I call a // negative-infinite interval. Result operator()(std::array const& finite, Real const& a, bool isPositiveInfinite) { Result result; if (isPositiveInfinite) { if (finite[1] > a) { result.overlap[0] = std::max(finite[0], a); result.overlap[1] = finite[1]; if (result.overlap[0] < result.overlap[1]) { result.numIntersections = 2; result.type = Result::isFinite; } else { result.numIntersections = 1; result.type = Result::isPoint; } } else if (finite[1] == a) { result.numIntersections = 1; result.overlap[0] = a; result.overlap[1] = result.overlap[0]; result.type = Result::isPoint; } else { result.numIntersections = 0; result.overlap[0] = (Real)0; result.overlap[1] = (Real)0; result.type = Result::isEmpty; } } else // is negative-infinite { if (finite[0] < a) { result.overlap[0] = finite[0]; result.overlap[1] = std::min(finite[1], a); if (result.overlap[0] < result.overlap[1]) { result.numIntersections = 2; result.type = Result::isFinite; } else { result.numIntersections = 1; result.type = Result::isPoint; } } else if (finite[0] == a) { result.numIntersections = 1; result.overlap[0] = a; result.overlap[1] = result.overlap[0]; result.type = Result::isPoint; } else { result.numIntersections = 0; result.overlap[0] = (Real)0; result.overlap[1] = (Real)0; result.type = Result::isEmpty; } } result.intersect = (result.numIntersections > 0); return result; } Result operator()(Real const& a0, bool isPositiveInfinite0, Real const& a1, bool isPositiveInfinite1) { Result result; if (isPositiveInfinite0) { if (isPositiveInfinite1) { // overlap[1] is +infinity, but set it to +1 because Real // might not have a representation for +infinity. The // type indicates the interval is positive-infinite, so // the +1 is a reminder that overlap[1] is +infinity. result.numIntersections = 1; result.overlap[0] = std::max(a0, a1); result.overlap[1] = (Real)+1; result.type = Result::isPositiveInfinite; } else // interval1 is negative-infinite { if (a0 > a1) { result.numIntersections = 0; result.overlap[0] = (Real)0; result.overlap[1] = (Real)0; result.type = Result::isEmpty; } else if (a0 < a1) { result.numIntersections = 2; result.overlap[0] = a0; result.overlap[1] = a1; result.type = Result::isFinite; } else // a0 == a1 { result.numIntersections = 1; result.overlap[0] = a0; result.overlap[1] = result.overlap[0]; result.type = Result::isPoint; } } } else // interval0 is negative-infinite { if (isPositiveInfinite1) { if (a0 < a1) { result.numIntersections = 0; result.overlap[0] = (Real)0; result.overlap[1] = (Real)0; result.type = Result::isEmpty; } else if (a0 > a1) { result.numIntersections = 2; result.overlap[0] = a1; result.overlap[1] = a0; result.type = Result::isFinite; } else { result.numIntersections = 1; result.overlap[0] = a1; result.overlap[1] = result.overlap[0]; result.type = Result::isPoint; } result.intersect = (a0 >= a1); } else // interval1 is negative-infinite { // overlap[0] is -infinity, but set it to -1 because Real // might not have a representation for -infinity. The // type indicates the interval is negative-infinite, so // the -1 is a reminder that overlap[0] is -infinity. result.numIntersections = 1; result.overlap[0] = (Real)-1; result.overlap[1] = std::min(a0, a1); result.type = Result::isNegativeInfinite; } } result.intersect = (result.numIntersections > 0); return result; } // Dynamic query. Current time is 0, maxTime > 0 is required. Result operator()(Real maxTime, std::array const& interval0, Real speed0, std::array const& interval1, Real speed1) { Result result; result.type = Result::isDynamicQuery; if (interval0[1] < interval1[0]) { // interval0 initially to the left of interval1. Real diffSpeed = speed0 - speed1; if (diffSpeed > (Real)0) { // The intervals must move towards each other. 'intersect' // is true when the intervals will intersect by maxTime. Real diffPos = interval1[0] - interval0[1]; Real invDiffSpeed = (Real)1 / diffSpeed; result.intersect = (diffPos <= maxTime * diffSpeed); result.numIntersections = 1; result.firstTime = diffPos * invDiffSpeed; result.lastTime = (interval1[1] - interval0[0]) * invDiffSpeed; result.overlap[0] = interval0[0] + result.firstTime * speed0; result.overlap[1] = result.overlap[0]; return result; } } else if (interval0[0] > interval1[1]) { // interval0 initially to the right of interval1. Real diffSpeed = speed1 - speed0; if (diffSpeed > (Real)0) { // The intervals must move towards each other. 'intersect' // is true when the intervals will intersect by maxTime. Real diffPos = interval0[0] - interval1[1]; Real invDiffSpeed = (Real)1 / diffSpeed; result.intersect = (diffPos <= maxTime * diffSpeed); result.numIntersections = 1; result.firstTime = diffPos * invDiffSpeed; result.lastTime = (interval0[1] - interval1[0]) * invDiffSpeed; result.overlap[0] = interval1[1] + result.firstTime * speed1; result.overlap[1] = result.overlap[0]; return result; } } else { // The intervals are initially intersecting. result.intersect = true; result.firstTime = (Real)0; if (speed1 > speed0) { result.lastTime = (interval0[1] - interval1[0]) / (speed1 - speed0); } else if (speed1 < speed0) { result.lastTime = (interval1[1] - interval0[0]) / (speed0 - speed1); } else { result.lastTime = std::numeric_limits::max(); } if (interval0[1] > interval1[0]) { if (interval0[0] < interval1[1]) { result.numIntersections = 2; result.overlap[0] = (interval0[0] < interval1[0] ? interval1[0] : interval0[0]); result.overlap[1] = (interval0[1] > interval1[1] ? interval1[1] : interval0[1]); } else // interval0[0] == interval1[1] { result.numIntersections = 1; result.overlap[0] = interval0[0]; result.overlap[1] = result.overlap[0]; } } else // interval0[1] == interval1[0] { result.numIntersections = 1; result.overlap[0] = interval0[1]; result.overlap[1] = result.overlap[0]; } return result; } result.intersect = false; result.numIntersections = 0; result.overlap[0] = (Real)0; result.overlap[1] = (Real)0; result.firstTime = (Real)0; result.lastTime = (Real)0; return result; } }; // Template aliases for convenience. template using TIIntervalInterval = TIQuery, std::array>; template using FIIntervalInterval = FIQuery, std::array>; }