// David Eberly, Geometric Tools, Redmond WA 98052 // Copyright (c) 1998-2020 // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt // Version: 4.0.2019.08.13 #pragma once #include // The algorithms here are based on solving the linear heat equation using // finite differences in scale, not in time. The following document has // a brief summary of the concept, // https://www.geometrictools.com/Documentation/FastGaussianBlur.pdf // The idea is to represent the blurred image as f(x,s) in terms of position // x and scale s. Gaussian blurring is accomplished by using the input image // I(x,s0) as the initial image (of scale s0 > 0) for the partial differential // equation // s*df/ds = s^2*Laplacian(f) // where the Laplacian operator is // Laplacian = (d/dx)^2, dimension 1 // Laplacian = (d/dx)^2+(d/dy)^2, dimension 2 // Laplacian = (d/dx)^2+(d/dy)^2+(d/dz)^2, dimension 3 // // The term s*df/ds is approximated by // s*df(x,s)/ds = (f(x,b*s)-f(x,s))/ln(b) // for b > 1, but close to 1, where ln(b) is the natural logarithm of b. If // you take the limit of the right-hand side as b approaches 1, you get the // left-hand side. // // The term s^2*((d/dx)^2)f is approximated by // s^2*((d/dx)^2)f = (f(x+h*s,s)-2*f(x,s)+f(x-h*s,s))/h^2 // for h > 0, but close to zero. // // Equating the approximations for the left-hand side and the right-hand side // of the partial differential equation leads to the numerical method used in // this code. // // For iterative application of these functions, the caller is responsible // for constructing a geometric sequence of scales, // s0, s1 = s0*b, s2 = s1*b = s0*b^2, ... // where the base b satisfies 1 < b < exp(0.5*d) where d is the dimension of // the image. The upper bound on b guarantees stability of the finite // difference method used to approximate the partial differential equation. // The method assumes a pixel size of h = 1. namespace WwiseGTE { // The image type must be one of short, int, float or double. The // computations are performed using double. The input and output images // must both have xBound elements. template class FastGaussianBlur1 { public: void Execute(int xBound, T const* input, T* output, double scale, double logBase) { int xBoundM1 = xBound - 1; for (int x = 0; x < xBound; ++x) { double rxps = static_cast(x) + scale; double rxms = static_cast(x) - scale; int xp1 = static_cast(std::floor(rxps)); int xm1 = static_cast(std::ceil(rxms)); double center = static_cast(input[x]); double xsum = -2.0 * center; if (xp1 >= xBoundM1) // use boundary value { xsum += static_cast(input[xBoundM1]); } else // linearly interpolate { double imgXp1 = static_cast(input[xp1]); double imgXp2 = static_cast(input[xp1 + 1]); double delta = rxps - static_cast(xp1); xsum += imgXp1 + delta * (imgXp2 - imgXp1); } if (xm1 <= 0) // use boundary value { xsum += static_cast(input[0]); } else // linearly interpolate { double imgXm1 = static_cast(input[xm1]); double imgXm2 = static_cast(input[xm1 - 1]); double delta = rxms - static_cast(xm1); xsum += imgXm1 + delta * (imgXm1 - imgXm2); } output[x] = static_cast(center + logBase * xsum); } } }; }